
FAST SCREEN CONTENT CODING AND TWO TIER
360 DEGREE VIDEO STREAMING

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Electrical Engineering)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Fanyi Duanmu

May 2018

FAST SCREEN CONTENT CODING AND TWO TIER
360 DEGREE VIDEO STREAMING

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Electrical Engineering)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Fanyi Duanmu

May 2018

Approved:

Department Chair Signature

Date

University ID: N13364196

Net ID: fd471

ii

Approved by the Guidance Committee:

Major: Electrical Engineering

Yao Wang
Professor of

Electrical and Computer Engineering

Date

Yong Liu
Associate Professor of

Electrical and Computer Engineering

Date

Ivan Selesnick
Professor of

Electrical and Computer Engineering

Date

Edward Wong
Associate Professor of

Computer Science and Engineering

Date

iii

Microfilm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv

Vita

Fanyi Duanmu was born in China on May 26, 1986. He received the B.S.

and M.S. degree both in Electrical Engineering from Beijing Institute of Technol-

ogy, Beijing, China and Polytechnic Institute of New York University, Brooklyn,

NY, in 2009 and 2011, respectively. Since January 2013, he has been a PhD stu-

dent at Electrical and Computer Engineering Department at New York University,

Brooklyn, NY under the supervision of Professor Yao Wang.

In summer 2014 and summer 2015, he worked as a video codec intern at Huawei

Technologies, Santa Clara, CA, on the standardization of HEVC Screen Content

Coding (SCC) extension. In summer 2017, he worked as a video codec intern

at InterDigital Communications, San Diego, CA, on the standardization of Next

Generation Video Coding on SDR and 360-degree videos. During his doctorate

study, his research area includes video coding and transcoding, screen content

compression and virtual reality streaming.

v

Acknowledgment

Firstly, I would like to present my appreciation and gratitude to my PhD

advisor, Professor Yao Wang, for her invaluable guidance, insight and support

through my entire PhD program. Her knowledge, research passion and diligence

not only inspires me during my PhD study but also my future career. I would like

to thank my guidance committee members, Professor Yong Liu, Professor Ivan

Selesnick and Prof. Edward Wong for their precious time in reviewing this work

and their constructive suggestions to improve this work from different aspects.

Secondly, I would like to thank my labmates: Dr. Eymen Kurdoglu, Dr. Jen-

wei Kuo, Mr. Shervin Minaee, Mr. Andy Chiang, Dr. Yilin Song, Mr. Yuan Wang,

Ms. Chenge Li, Mr. Ran Wang for the inspirational discussions and collaborations

during my PhD program. I also feel lucky and grateful to collaborate with Dr.

Amir Hosseini, Mr. Liyang Sun, Mr. Yixiang Mao and Mr. Shuai Liu in my

previous projects, who gave me valuable inputs and supports along the way.

Thirdly, I would like to thank my industrial collaborators during my previous

internships and paper co-publications. Particularly, I would like to thank Dr.

Haoping Yu, Mr. Wei Wang from Huawei, Dr. Yuwen He, Dr. Yan Ye, Dr.

Xiaoyu Xiu, Dr. Philippe Hanhart and Mr. Yan Zhang from InterDigital, Dr.

Zhan Ma from Nanjing University, Dr. Xiaozhong Xu from Tencent, Dr. Meng Xu

from Ubilinx. Their inspirations and suggestions significantly benefit my research

and skillset development from an industrial perspective.

Additionally, I also wish to thank everybody not mentioned here, but who

contributed in one way or another towards the success of this thesis.

The last but not the least, I would like to thank my parents and my wife, for

their unconditional love, support and encouragement throughout my life.

vi

To my parents Qingduo Duanmu, Yihua Wang and my wife Chuhan Ran

vii

ABSTRACT

FAST SCREEN CONTENT CODING AND TWO TIER 360

DEGREE VIDEO STREAMING

by

Fanyi Duanmu

Advisor: Prof. Yao Wang, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

May 2018

In this thesis, efficient video delivery solutions are designed to address screen

content coding (SCC) and 360-degree video streaming. Towards this goal, multiple

sub-problems and applications are addressed.

The first problem is to accelerate screen content encoding and transcoding,

while simultaneously preserving the coding efficiency. For encoding acceleration,

machine learning based fast algorithms are proposed, using High Efficiency Video

Coding (HEVC) coding unit (CU) features for fast block mode and partition deci-

viii

sions. For transcoding acceleration, additional side information from the decoded

bitstream is further incorporated for fast block mode and partition decisions, using

machine learning and mode mapping techniques for forward HEVC to HEVC-SCC

transcoding and backward HEVC-SCC to HEVC transcoding, respectively. Sig-

nificant encoding and transcoding complexity reductions have been achieved with

negligible losses in coding efficiency.

The second problem is to efficiently stream on-demand 360-degree videos or

virtual reality (VR) contents. A novel two-tier streaming framework is proposed

to simultaneously address the dynamics in bandwidth variation and user viewing

direction changes. The proposed solution formulates the 360-degree video stream-

ing as a dynamic video segment scheduling problem and utilizes prioritized buffer

control solution to effectively determine the pre-fetching action and bitrate, based

on the current estimated bandwidth, buffer status and view prediction accuracy.

The system achieves a significant performance improvement in the delivered video

quality compared with benchmark solutions.

ix

Contents

Vita . iv

Acknowledgements . v

Abstract . vii

List of Figures . xv

List of Tables . xvii

1 Introduction 1

1.1 Motivation of Fast Screen Content Coding 1

1.2 Previous Work on Video Codec Acceleration 4

1.3 Contributions to Screen Content Coding 8

1.4 Motivation of Two-tier 360 Video Streaming 10

1.5 Previous Work on 360 Video Streaming 11

1.6 Contribution to 360 Video Streaming 13

1.7 Outline of the Thesis . 13

2 Screen Content Model (SCM) - Brief Review 15

2.1 SCM Mode and Partition Decision 15

2.2 SCM New Coding Tools beyond HEVC 16

2.3 SCM-4.0 IBC and Inter Unification 17

x

2.4 SCM Fast Coding Decision Challenges 18

3 Screen Content Coding Statistical Study 20

3.1 Dataset Preparation . 20

3.2 Intra-Frame Mode and Partition Statistics 22

3.3 Inter-Frame Mode and Partition Statistics 24

3.4 SCM Complexity Distribution Statistics 24

4 Fast Screen Content Encoding Using Machine Learning 28

4.1 Fast SCC Encoder Workflow Overview 28

4.2 Feature Extraction and Classifier Design 32

4.3 Experimental Results and Evaluation 42

5 Fast HEVC-SCC Transcoding Using Machine Learning 49

5.1 Fast HEVC-SCC Transcoder Design 50

5.2 Block Type Classifier Design . 52

5.3 Experimental Results . 55

6 Fast SCC-HEVC Transcoding Using Statistical Mode Mapping 58

6.1 Fast SCC-HEVC Transcoder Design 59

6.2 Single-Input-Multiple-Output Transcoding 64

6.3 Experimental Results . 70

7 Two-Tier 360 Video Streaming with Prioritized Buffer Control 80

7.1 Overview of Two-Tier 360 Video Streaming System 80

7.2 Prioritized Buffer Control Based 360-degree Video Streaming 83

7.3 Enhancement Tier Target Buffer Length Optimization 87

7.4 360 Video Inter-Tier Rate Allocation 88

xi

7.5 360 Video Streaming Experimental Settings 92

7.6 Experimental Results and Evaluation 98

8 Conclusions and Future Work 101

8.1 Summary . 101

8.2 Future Work . 104

xii

List of Figures

1.1 Workflow of 360 Video Compression and Delivery System 12

2.1 SCM Hierachitical Quadtree Partitioning Structure 16

2.2 SC Block Coding Decision Comparison between SCC and HEVC.

Green blocks are PLT-coded. Red blocks are Intra-coded. 19

3.1 Sample Frames from SCC Standard Sequences 21

4.1 Fast Screen Content Encoding Workflow Diagram 30

4.2 CU32 NIB-SCB Classification Decision Tree 39

4.3 CU16 NIB-SCB Classification Decision Tree 39

4.4 CU8 NIB-SCB Classification Decision Tree 40

4.5 CU64 NP/P-Block Classification Decision Tree 41

4.6 CU32 NP/P-Block Classification Decision Tree 41

4.7 CU16 NP/P-Block Classification Decision Tree 42

4.8 CU64 ND/D-Block Classification Decision Tree 43

4.9 CU32 ND/D-Block Classification Decision Tree 43

4.10 CU16 ND/D-Block Classification Decision Tree 43

4.11 CU8 ND/D-Block Classification Decision Tree 44

xiii

5.1 HEVC-SCC Transcoding Framework 50

5.2 HEVC-SCC Transcoding Workflow 51

5.3 Sample Intra-coded Blocks in HEVC and SCC 52

5.4 SCB and NIB Intra-coding Residual Analysis (Top: SCB sample;

Bottom: NIB sample; Left: Image Pattern; Right: Residual Map

using white pixels to indicate nonzero entries) 53

6.1 SCC-HEVC Transcoding Framework 59

6.2 SCC-HEVC Transcoding Workflow 60

6.3 Sample PLT Block and Corresponding Index Map 61

6.4 Block Vector Reuse for IBC-Intra Mode Mapping. Green Block: the

current CU; Black Block in dashed line: the matching Block; Blue

Arrow: IBC Block Vector; Yellow Blocks: Mode Examination Area;

Each small blue square represents a 4x4 image block. 62

6.5 Block Vector Reuse for IBC-Inter Mode Mapping. Green Box: the

current CU; Yellow Box: IBC Matching Block; Blue Box: Inter-

frame matching block of IBC matching block; Blue Dashed Line: the

final “relayed” motion vector from the current CU to its temporal

matching block. 63

6.6 Illustration of on-demand SC video streaming 65

6.7 HEVC Coding Decision Sensitivity Illustration (QP=22 vs QP=37).

Left column: Sample Frames from “Desktop”, “Console”, “Map”,

“SlideShow”; Middle column: Intra-frame Sensitivity Map using

green blocks indicating consistent mode and partition decisions;

Right column: Inter-frame Sensitivity Map using blue blocks in-

dicating consistent mode and partition decisions 68

xiv

6.8 Transcoding Analysis of “WebBrowsing” (QP=22). Top Left: 8th

Frame; Top Right: 9th Frame; Mid Left: Anchor Transcoding Mode

and Partition Decisions; Mid Right: Proposed Transcoding Mode

and Partition Decisions; Bottom Left: Anchor Transcoding Bit-

Allocation. Bottom Right: Proposed Transcoding Bit-Allocation.

Red box: Intra-coded blocks; Green box: Inter-coded blocks; Blue

box: low-bit blocks; Orange box: high-bit blocks using color depth

to indicate bit-consumption level. 78

6.9 Sample frames in “MissionControlClip2” (left) and “MissionCon-

trolClip3” (right). Top and bottom: 1st and 11th frame, respec-

tively. Red boxes indicate the regions with dominant temporal mo-

tions. 79

7.1 Two-tier 360 Video Streaming System 81

7.2 Target Buffer Length Selection. Red curve: average view prediction

accuracy (α). Blue curve: average chunk pass rate (γ). Purple

curve: product of α and γ. The optimal operation point locates at

the peak of purple curve. 88

7.3 Sample Rate-Distortion Operation Point Analysis 91

7.4 JVET CfE 360◦ Video Rate-Distortion Curves 93

7.5 Sample Frames in Test Videos “MegaCoaster”, “Amsterdam” . . . 93

7.6 Sample Network Bandwidth Traces after Scaling. 94

7.7 Sample view trace in yaw and pitch directions. Over yaw trace, the

-180◦ coincides with +180◦. 95

8.1 SIMO Screen Content Streaming over Edge Cloud 105

xv

8.2 Multi-Path 360 Video Streaming Demonstration 108

xvi

List of Tables

3.1 Intra-frame Coding Sample Frame Selection 22

3.2 Intra-frame CU Partition Statistics 22

3.3 Intra-frame CU Mode Statistics . 23

3.4 Intra-Submode Statistics . 24

3.5 Inter-frame CU Partition Statistics 25

3.6 SCM-4.0 Inter-frame CU Mode Statistics 25

3.7 HM-16.4 Inter-frame CU Mode Statistics 26

3.8 SCM-4.0 Intra-frame Complexity Statistics 26

3.9 SCM-4.0 Inter-frame Complexity Statistics 27

4.1 Proposed Framework Coding Efficiency and Complexity Reduction

Evaluation using “Rate-Distortion Preserving” (RDP) Configuration 45

4.2 Proposed Framework Coding Efficiency and Complexity Reduction

Evaluation using “Complexity-Reduction Boosting” (CRB) Config-

uration . 46

4.3 Per-Classifier Contribution Analysis 47

4.4 Coding Efficiency and Complexity Comparisons with Prior Work . . 48

5.1 Fast HEVC-SCC Transcoding Framework Performance 57

xvii

6.1 Fast SCC-HEVC Transcoding Framework Performance (AI-SISO) . 72

6.2 Fast SCC-HEVC Transcoding Framework Performance (AI-SIMO) . 73

6.3 Fast SCC-HEVC Transcoding Framework Performance (LD-SISO) . 74

6.4 Fast SCC-HEVC Transcoding Framework Performance (LD-SIMO) 75

7.1 Video Rendering Rate in Different ET Target Buffer Length 99

7.2 Performance Evaluations against Benchmark Solutions in Average

Video Rendering Rate (Mbps) / Video Freeze Ratio (%) 100

1

Chapter 1

Introduction

1.1 Motivation of Fast Screen Content Coding

Screen content (SC) videos have become popular in recent years due to the de-

velopment and technical advances in mobile technologies and cloud applications,

such as shared screen collaboration, remote desktop interfacing, cloud gaming,

wireless display, animation streaming, online education, etc. These emerging appli-

cations create an urgent need for better compression technologies and low-latency

delivery solutions for screen content videos, especially to support the incoming HD

requirement of 4K or even higher resolutions.

To explore the unique signal characteristics of screen content and develop effi-

cient SC compression solutions, the ISO/IEC Moving Picture Expert Group and

the ITU-T Video Coding Experts Group, also referred as Joint Collaborative Team

on Video Coding (JCT-VC), has launched the standardization of SCC extension

[60] on top of the latest video standard - High Efficiency Video Coding (HEVC)

[61] since January 2014 and this extension is concluded in 2016 with significant

2

research efforts involved from both academia and industry.

The official JCTVC Screen Content Model software (SCM) [28] is reported

to provide over 50% BD-Rate saving over HEVC Range Extension (RExt) [60]

for computer-generated contents. Four major coding tools were introduced and

adopted during the standardization, known as “Intra Block Copy” (IBC) [49][5],

“Palette Coding Mode” (PLT) [22], “Adaptive Color Transform” (ACT) [80] and

“Adaptive Motion Compensation Precision” (AMCP) [40] [37], respectively.

Recognizing the market need and SCC efficiency, many industrial companies

are currently following this new extension and most likely may include these new

coding techniques into their future products and services. However, the intrinsic

flexibility of HEVC partitioning scheme and the newly-introduced screen content

coding tools impose a significant computational burden on the encoder, primarily

during the seeking of optimal combinations of coding unit (CU) partitions and

modes, as summarized into the following two fundamental problems:

Problem 1 - Mode Decision: given the current CU, which mode (among 35 intra

modes, inter mode, palette mode and intra block copy mode) should be chosen to

minimize Rate-Distortion (RD) cost?

Problem 2 - Partition Decision: given the current CU, should it be further

partitioned into smaller sub-CUs for a reduced RD-cost?

In HEVC model software (HM) [47] and SCM [28], an exhaustive search method

is employed to solve these two problems by examining all possible modes for the

current CU and comparing the RD-cost of the current CU using the best mode

against the sum of RD-costs from its sub-CUs, each using the best mode and

partition recursively. However, for time-critical applications, such exhaustive mode

and partition decision strategy is not practical. Therefore, it is important to

3

develop fast algorithms to accelerate the CU partition and mode decisions while

simultaneously preserving the coding efficiency.

On the other hand, how to efficiently bridge the existing HEVC bitstream and

the incoming SCC bitstream through software-based video transcoding (VTC)

solution becomes desirable and useful, especially during the phase when baseline

HEVC bitstream and the novel SCC bitstream coexist, as summarized into the

following two scenarios:

Scenario 1 - Forward Transcoding: given the HEVC bitstream, how to convert it

into more efficient SCC bitstream to accommodate bandwidth-critical applications?

Scenario 2 - Backward Transcoding: given the novel SCC bitstream, how to

convert it back to HEVC bitstream to provide backward compatibility over the legacy

HEVC devices?

VTC is a useful and mature technology to realize video adaptation. It converts

the incoming bitstream from one version to another. During the conversion, many

properties from the source video may change, such as video format, video bitrate,

frame rate, spatial resolution and coding standards used, etc. In the literature,

the conversion within the same standard (e.g., the spatial re-scaling in H.264) is

referred as the “homogeneous transcoding”, while the conversion between different

standards (e.g., between H.264/AVC and HEVC) is referred as the “heterogeneous

transcoding”. Beyond that, even additional information could be inserted dur-

ing transcoding, such as video watermarking, error resilience, etc. In practice, a

transcoding server can be set up to periodically examine the client’s constraints

(e.g., bandwidth, power limit, display resolution, etc.) and accordingly “tailor”

the suitable bitstream to the clients.

Though it is absolutely possible to use the “trivial” solution, which firstly

4

decodes the source bitstream and then completely re-encodes into the target bit-

stream, however, such approach proves inefficient from the complexity point of

view. A reasonable solution should maximally utilize the decoded side information

from the source bitstream to facilitate the re-encoding such that both the coding

efficiency is well-preserved and the re-encoding speed is significantly improved.

1.2 Previous Work on Video Codec Acceleration

There are a huge amount of prior works for video encoding accelerations. These

prior works can be categorized into the following categories:

Category 1 - Mode Reduction. A gradient-based fast mode decision framework

was proposed in [83], which is based on CU directional histogram analysis to reduce

the number of Intra candidates before mode selection. A 20% complexity reduction

over HM-4.0 is reported under this scheme with negligible coding performance loss

for Intra-frame coding. Another fast intra mode decision algorithm was proposed

in [27], which exploits the directional information of neighboring blocks to reduce

the Intra candidates of the current CU. Up to 28% complexity reduction is reported

over HM-1.0 with insignificant coding performance loss for Intra-frame coding. The

HM test model software adopted [54] to reduce Intra-mode candidates. Firstly, a

rough mode decision (RMD) is performed using Hadamard cost to choose fewer

candidates out of 35. Then the extra most probable modes (MPMs) derived from

spatial neighbors will be added to the previous candidate set if they are not yet

included.

Category 2 - Cost Replacement. An entropy-based fast Coding Tree Unit par-

tition algorithm was proposed in [82], which replaces heavy Rate-Distortion opti-

5

mization (RDO) calculation by Shannon entropy calculation. A 60% complexity

reduction is reported using this algorithm with a BD-rate loss of 3.8% for Intra-

frame coding. In [54], Hadamard cost is used for Intra RMD without fully for-

mulating the RD cost. This approach significantly reduces the Intra-frame coding

complexity.

Category 3: Fast Partition Termination. A fast CU splitting decision scheme

was proposed in [43], using weighted SVM decision for early CU partition termina-

tion for both Intra-frame and Inter-frame coding. A complexity reduction of >40%

is reported over HM-6.0. Another fast termination algorithm was proposed in [26],

using texture complexity of neighboring blocks to eliminate unnecessary partition

of the current CU. A 23% encoder speed-up on average is reported over HM-9.0

for Intra-frame coding. Another work by Zhang and Ma [77] includes a set of early

termination criteria for HEVC intra coding based on experimental observation and

simulation results. To determine the splitting decision, encoder will do a 1-level

RD evaluation by comparing current CU Hadamard cost with the combined Hard-

mard cost of 4 sub-CUs without further splitting. Zhang and Ma further proposed

an improved 3-step fast HEVC Intra coding algorithm in [78]. At the RMD step, a

2:1 down-sampled Hadamard transform is used to approximate the encoding cost

followed by a progressive mode refinement and early termination verification. It

reports a 38% average complexity reduction over HM-6.0 with 2.9% BD-rate loss

for Intra-frame coding.

Category 4: Fast Search Algorithm. A number of fast motion estimation

(ME) algorithms have been proposed in the past years, including multi-step search

[39][55], diamond search [88], cross-diamond search [6], hexagon search [87], etc.

These algorithms follow different search patterns to reduce the number of search

6

points for Inter-frame coding. In HEVC Test Model software (HM), Enhanced

Predictive Zonal Search (EPZS) [65] is incorporated to reduce encoder complex-

ity, in which prediction is continuously refined within a local search using a small

diamond or square pattern and the updated best vector becomes the new search

center.

These prior works were mainly proposed for natural video coding without con-

sidering the unique signal characteristics of screen contents, which typically contain

limited distinct colors, sharper edges, repetitive graphical patterns, less compli-

cated textures and irregular temporal motions. Besides, these works did not take

into account the newly-introduced SCC modes (e.g., IBC or PLT). Therefore, these

conventional fast algorithms cannot be directly applied onto screen content coding.

There are a few recent works on SC fast encoding. For instance, Li and Xu

presented a fast algorithm for AMCP [36] to quickly determine the frame type

(namely, SC image or Natural image), based on the percentage analysis of smooth

blocks, collocated blocks, matched blocks and other blocks (i.e., the blocks that

do not belong to the previous three categories). For similar encoder complexity,

a 7.7% average BD-Rate improvement is reported over SCM-2.0 for Inter-frame

coding. Kwon and Budagavi proposed a fast IBC search algorithm [33], by impos-

ing restrictions on IBC search range, search directions and motion compensation

precision. There are also several works on hash-based fast search algorithms for

IBC mode and Inter mode coding [57] [35] [38]. Tsang, Chan and Siu proposed

a Simple Intra Prediction (SIP) scheme [66] to bypass RMD and RDO processing

for smooth SCC regions, whose CU boundary samples are exactly the same. Up

to 26.7% peak complexity reduction is reported over SCM-2.0 with marginal video

quality degradation for Intra-frame coding. Lee et al. proposed a fast transform-

7

skip mode decision scheme for SCC [34], by enforcing IBC block with zero coded

block flag (CBF) to be encoded with transform-skip mode. A 3% encoding speed-

up is reported over SCM-2.0. Zhang, Guo and Bai proposed a fast Intra partition

algorithm [81] for SCC, using CU entropy and CU coding bits to determine CU

partition decision for Intra-frame coding. In a recent work [79] proposed by Zhang

and Ma, temporal CU depth correlations are exploited and adaptive block search

step size is incorporated. Average complexity reductions of 39% and 35% are

reported for lossy and lossless Intra-frame coding, respectively.

Beyond these fast encoding solutions, video transcoding fast algorithms ben-

efit greatly from re-utilizing the decoded video side information, including block

partition decision, coding mode distribution, residuals, transform coefficients, etc.

In [67], a high-level video transcoding overview is presented from a system archi-

tectural perspective and introduces the spatial and temporal resolution reduction,

DCT-domain down-conversion. When HEVC is finalized in 2013, a huge amount

of VTC studies were redirected to “H.264-HEVC” conversion area. For instance,

Peixoto, et al. proposed several machine learning and statistics based schemes (e.g.,

[51] [53] [52]) to improve HEVC re-encoding speed. In their papers, H.264/AVC

Macroblocks (MBs) are mapped into HEVC coding units (CU) based on the motion

vectors (MVs) distribution through online or offline training. Incorporated with

statistics-based fast termination criteria, the proposed schemes could introduce a

>3x encoder speedup with a 4% BD-Rate loss compared with trivial transcoder.

Diaz-Honrubia, et al. also proposed a series of fast VTC schemes (e.g., [8] [25])

to exploit H.264/AVC decoded side information for HEVC CU partition decision

based on a Naive-Bayes (NB) classifier, specifically for CUs with size 32x32 and

64x64, whereas for the smaller CUs, the proposed transcoder simply mimics the

8

H.264/AVC coding behaviors. A quantitative speed-up of 2.5x is reported with

only 5% BD-Rate penalty. In [84], a HEVC fast transcoder is proposed based

on block homogeneity prediction. Residuals and MV consistencies are populated

to represent the homogeneity of the target region and decide the CU partition.

Another similar work [85] proposed by Zheng uses residual mean absolute devia-

tions (MAD) and sum of absolute residual (SAR) as the homogeneity indicator to

early terminate CU partition. A 57% complexity reduction is achieved with only

2.2% BD-Rate loss. In [48], a mode merging and mapping solution is presented

using H.264/AVC motion vector (MV) variance and mode conditional probabilities

to predict HEVC merge decisions. A 50% complexity reduction is reported with

negligible BD-Rate loss.

1.3 Contributions to Screen Content Coding

Even though there have been substantial prior research efforts in video coding

and transcoding acceleration, to my best knowledge, there are very limited prior

works on fast SC encoding and there is no prior work on SC transcoding. In this

thesis, fast compression frameworks and algorithms are designed and implemented

to accelerate SC encoding and transcoding. The major contributions in this work

can be summarized as follows.

Firstly, extensive statistical investigations and complexity studies are con-

ducted, to analyze HEVC and SCC encoding decisions over different screen con-

tents. Such information enables us to better understand the relationships between

screen content characteristics and the codec behaviors (e.g., mode preferences) to

facilitate our algorithm development.

9

Secondly, a machine learning based fast screen content encoding framework is

proposed to accelerate CU mode and partition decisions. This framework includes

three major classifiers designed to either reduce the mode candidates to be exam-

ined or to make fast partition decisions. Our experimental results demonstrate

that the proposed algorithm can achieve a significant complexity reduction while

simultaneously preserving the coding efficiency.

Thirdly, a machine learning based HEVC-SCC forward transcoding framework

is proposed for accelerating CU mode and partition decisions, using CU low level

features and the decoded residual signal sparsity to accurately classify the incom-

ing CUs into either “natural video” or “screen content” and directly trigger the

corresponding mode candidate(s). To our best knowledge, this is the first work

in this area and it achieves a significant transcoding speedup. The framework is

designed to facilitate some bandwidth-critical screen content applications, such as

remote desktop interfacing, wireless display, etc.

Fourthly, a fast SCC-HEVC backward transcoding framework based on statis-

tical mode mapping technique is proposed. Fully exploiting the side information

from the decoded SCC bitstream, fast mode and partition decisions are designed

to accurately determine the mode mapping relationship between the novel SCC

modes and the conventional HEVC modes. To my best knowledge, this is the first

work in this area and it achieves remarkable transcoding complexity reduction with

negligible coding efficiency loss. The framework supports the backward bitstream-

compatibility over the legacy HEVC devices and can be further extended into the

single-input-multiple-out (SIMO) architecture to support adaptive screen content

video streaming over the edge cloud.

10

1.4 Motivation of Two-tier 360 Video Streaming

In recent years, Virtual Reality (VR) and Augmented Reality (AR) technologies

have become popular and rapidly commercialized. A variety of applications have

been developed continuously to meet the market demands and consumer expec-

tations, such as immersive cinema, gaming, education and training, tele-presence,

social media, and healthcare, etc. The main differentiator is to provide the end

consumers with omni-directional viewing flexibility and immersive video experi-

ence. Some preliminary 360 video services are already made available on several

major video platforms, such as YouTube, Facebook, etc. However, the current

delivery solutions still treat 360 videos as regular 2D videos and stream the entire

360 degree view scope to the end users regardless of their view directions. Com-

pared with the traditional video streaming, 360 degree video streaming confronts

unique new challenges. Firstly, to deliver an immersive VR experience, 360 video

has much higher bandwidth requirement. For example, a premium quality 360

video with 60 frames per second, 4K resolution can consume bandwidth up to

multiple Gigabits-per-second (Gbps). Secondly, user view direction dynamics is

a new dimension of freedom in 360 degree video streaming. A user may freely

change or navigate her viewing direction during the video playback and expect to

see the scene in the new viewing direction immediately. Since only a small portion

of the entire 360 degree video is watched at any time, therefore, streaming the

entire 360 degree video representation is unnecessary and bandwidth-consuming.

On the other hand, only streaming the video in the predicted viewing direction

will introduce streaming discontinuity whenever the view prediction is inaccurate.

How to stream 360-degree video and robustly adapt to network variation and the

users’ view direction dynamics is a challenging problem and a critical requirement

11

for the wide adoption of VR/AR.

1.5 Previous Work on 360 Video Streaming

In recent years, a few 360-degree video streaming solutions have been proposed,

as summarized into the following categories.

Category 1: 360 Video Source Representation. A typical 360 degree video

compression and delivery workflow is illustrated in Figure 1.1. Firstly, videos cap-

tured from multiple cameras are stitched together into a native projection format,

e.g., equirectangular projection (ERP) format. The native projection format can

be converted into another projection format, e.g., cubemap (CMP), and frame-

packed before being fed into modern video codecs, such as H.264/AVC, HEVC,

VP9, etc. In such a framework, the selection of the intermediate video projection

format is important and would potentially improve 360 video coding efficiency.

Facebook proposed the cubemap [31] and pyramid [32] projection and encoding

solutions in 2016, to specifically address the on-demand 360 video streaming ap-

plication, with 25% and 80% compression improvements reported, respectively.

The Joint Video Exploration Team (JVET) also proposed several projection so-

lutions, including Icosahedral projection (ISP) [86], Segmented Sphere Projection

(SSP) [76], Truncated Square Pyramid Projection (TSP) [9], Octahedron Projec-

tion (OHP) [41], Hybrid Cubemap (HCP) [23] [11] [24], etc.

Category 2: Source Bit Allocation. Different view regions have different

perceptual quality implications, consequently deserve different numbers of coding

bits. In [4], a region-adaptive smoothing scheme is proposed to reduce the bitrate

spent within the polar regions of equi-rectangular 360 videos through Gaussian

12

Figure 1.1: Workflow of 360 Video Compression and Delivery System

filtering. A 20% bitrate reduction is reported with unnoticeable perceptual quality

degradation.

Category 3: View-oriented Streaming. In [70], a few tile-based encoding and

streaming solutions are proposed, including scalable coding scheme and simulcast

coding scheme. Video tiles that cover the whole 360 scene are coded in multiple

rates. Depending on the Field of View (FOV), tiles within or close to the pre-

dicted FOV are fetched with higher bitrate while tiles far away from the predicted

FOV are fetched with lower bitrate. In [56], a view prediction based framework

is proposed by only fetching the video portions desirable to the end user to re-

duce the bandwidth consumption. A dynamic video chunk adaptation scheme is

implemented to adjust the tile coverage based on the view prediction accuracy.

An estimated 80% maximum rate reduction is reported without considering the

coding efficiency loss due to video tiling and bandwidth variations.

13

1.6 Contribution to 360 Video Streaming

Inspired by the prior works, in this thesis, a two-tier 360-degree video stream-

ing framework with prioritized buffer control is proposed. In this framework, 360

videos are encoded into two tiers and adaptively streamed to better accommo-

date the dynamics in both network throughput and user viewing direction. This

framework aims at maximally utilizing the available bandwidth to enhance the end

viewers’ quality of experience (QoE). Unlike the previous solutions, the proposed

framework is source-representation-independent. Any aforementioned projection

solution (e.g., Cube-map, Icosahedral, etc.) and source bit-allocation approach

(e.g., region-adaptive smoothing) can be easily incorporated into our framework

for additional performance improvement. Through extensive simulations driven

by real network bandwidth traces and user view traces, the proposed framework

demonstrates significant performance improvement against the benchmark 360-

degree video streaming solutions.

1.7 Outline of the Thesis

This thesis consists of two major research topics.

Topic 1 on fast screen content coding spans from Chapter 2 to Chapter 6 and

is organized as follows.

Chapter 2 briefly reviews screen content model (SCM) quad-tree coding struc-

ture, new compression tools and discusses about the technical challenges.

Chapter 3 provides statistical studies and coding behavior analyses and com-

plexity distribution of SCC and HEVC encoders over typical screen contents.

Chapter 4 presents the proposed fast screen content encoding framework based

14

on machine learning techniques, including feature selection, classifier selection,

parameter training methodologies and the classifiers design. Experimental results

are presented to demonstrate the achieved encoder acceleration.

Chapter 5 presents the proposed HEVC-SCC forward transcoding framework

based on machine learning techniques, using neural network to design classifiers

to make fast coding decisions. Experimental results are presented to demonstrate

the achieved transcoding speedup.

Chapter 6 presents the proposed SCC-HEVC backward transcoding framework

based on statistical mode mapping techniques. The proposed fast algorithms are

integrated into single-input-multiple-output (SIMO) framework for adaptive screen

content streaming applications over the edge cloud. Experimental results are pre-

sented to demonstrate the achieved transcoding speedup.

Topic 2 on two-tier 360-degree video streaming is introduced in Chapter 7. A

prioritized buffer control algorithm is proposed to adaptively determine the video

tier and video rate to be requested. Experimental results demonstrate the potential

performance gain compared with the benchmark solutions.

Finally, Chapter 8 concludes this thesis with some future work summarized.

15

Chapter 2

Screen Content Model (SCM) -

Brief Review

SCM [28] is the JCTVC official test model software for SCC extension devel-

opment. This software is developed upon HEVC-RExt [60] codebase and supports

YUV-4:4:4, YUV-4:2:0 and RGB-4:4:4 sampling formats. Beyond HEVC, new cod-

ing tools are introduced to improve SC coding efficiency. Within the scope of this

thesis, we are working on SCM-4.0 software and the proposed algorithms can be

easily generalized onto other SCM releases.

2.1 SCM Mode and Partition Decision

SCM inherits the same flexible quadtree block partitioning scheme from HEVC,

which enables the use of CUs, Prediction Units (PU) and Transform Units (TU) to

adapt to diverse picture contents. CU is the square basic unit for mode decision.

The Coding Tree Unit (CTU) is the largest CU, of 64x64 pixels by default.

16

Figure 2.1: SCM Hierachitical Quadtree Partitioning Structure

At encoder, pictures are divided into non-overlapping CTUs and each CTU

can be recursively divided into four equal-sized smaller CUs, until the maximum

hierarchical depth is reached, as shown in Figure 2.1. At each CU-level, to deter-

mine the optimal encoding parameters (e.g., partition decision, mode decision, tool

usage, etc.), an exhaustive search method is employed by comparing the RD costs

using different coding modes and comparing the minimum RD cost at the current

CU level against the sum of RD costs of its sub-CUs (each using the best mode

and partition recursively). For the rest of this thesis, we will use “CU64” (i.e.,

CTU), “CU32”, “CU16” and “CU8” to denote the CUs at different hierarchical

depths.

2.2 SCM New Coding Tools beyond HEVC

Beyond HEVC, SCM adopted four major coding tools to compress screen con-

tents more efficiently, known as “Intra Block Copy”, “Palette Mode”, “Adaptive

Color Transform”, “Adaptive Motion Compensation Precision”, respectively.

Intra Block Copy (IBC) [49] [5] is an Intra-frame version of the motion estima-

tion and motion compensation scheme. To compress the current CU, the encoder

17

will look back into the previously coded areas (either in restricted area or globally)

in the same frame and look for the best matching block. If chosen, a “Block Vec-

tor” (BV) will be signaled, either explicitly or implicitly, to indicate the relative

spatial offset between the best matching block and the current PU location.

Palette Mode [22] encodes the current CU as a combination of a color table and

the corresponding index map [73]. Color table stores representative color “triplets”

of RGB or YUV. Then the original pixel block is translated into a corresponding

index map indicating which color entry in the color table is used for each pixel

location.

Adaptive Color Transform [80] converts residual signal from original RGB or

YUV color space onto YCoCg color space. It de-correlates the color components,

reduces the residual signal energy and therefore improves the coding performance.

Adaptive Motion Compensation Precision [40] [37] analyzes Inter-frame charac-

teristics and categorizes the current frame as either a natural video frame (NVF) or

screen content frame (SCF). For SCF, integer-pixel precision is applied for motion

estimation. For NVF, sub-pixel precision is applied.

2.3 SCM-4.0 IBC and Inter Unification

Beyond the previous SCM releases, IBC mode and Inter mode are unified in

SCM-4.0. Namely, IBC mode is treated as a special Inter mode with the refer-

ence frame restricted to the current frame and the reference area restricted to

the previously-encoded area in the current frame. This unification improves SCM

encoding from the following perspectives.

1. Workflow harmonization for hardware re-utilization.

18

2. Inter-frame CU encoding flexibility, i.e., Inter-frame CUs can have its PUs

copied from both the current frame and the temporal reference frame simultane-

ously.

3. Inter-frame coding schemes generalization over IBC blocks, such as “Ad-

vanced Motion Vector Prediction” (AMVP) [42], “Merge/Skip mode” [29], etc.

Henceforward, we use “IBC-Merge”, “IBC-Skip” and “IBC-Inter” to address the

difference against conventional HEVC terminology.

4. Inter-frame fast algorithms can be transfered onto Intra-frames. For in-

stance, when IBC finds a “Skip”-coded candidate, the encoder can safely terminate

all the following rate-distortion optimizations (RDO).

2.4 SCM Fast Coding Decision Challenges

Different from the conventional HEVC modes, new SCC modes are highly

dependent on the repetitive graphical patterns and image colors that previously

appeared. This “historical dependency” makes CU partition and mode decision

problems much more complicated and challenging. For example, in IBC blocks,

depending on whether similar pattern appeared previously, encoding costs of the

same CU pattern but at different locations may vary significantly. Similarly, for

PLT coding mode, two color tables are maintained. One is used for the current

CU coding and the other table (also referred as “palette predictor”) is used as a

dynamic lookup table caching the historical colors previously used. Depending on

whether similar colors appeared before and how frequent these colors are, the PLT

coding costs of the same CU pattern but at different locations may vary signifi-

cantly. Furthermore, the newly-introduced SCC modes enable “inhomogeneous”

19

Figure 2.2: SC Block Coding Decision Comparison between SCC and HEVC. Green
blocks are PLT-coded. Red blocks are Intra-coded.

blocks to be encoded into a larger block without splitting. As shown in Figure 2.2,

16×16 textual CUs in the top row are encoded directly using PLT mode (marked in

green) without splitting into smaller 8×8 Intra CUs (marked in red) in the bottom

row.

To conclude, due to the unique signal characteristics of screen contents and the

designs of PLT and IBC algorithms, traditional HEVC fast mode and partition

algorithms cannot be directly applied to SCC. How to efficiently and accurately

determine the SCC decisions for fast encoding and how to accurately correlate

modes and partitions between HEVC and SCC for fast transcoding are challenging

problems, even for human analytical judgment.

20

Chapter 3

Screen Content Coding Statistical

Study

In this chapter, we conduct extensive statistical studies on SC mode and parti-

tion distribution, to better understand the unique screen content signal character-

istics and HEVC and SCC encoding complexity distribution and mode selection

behaviors.

3.1 Dataset Preparation

Our statistical studies are based on HM-16.4 and SCM-4.0 encoding data over

the standard SC sequences jointly selected by the experts from JCTVC commu-

nity. These sequences cover the most typical screen contents, such as “Desktop”,

“Console”, “Map”, “SlideShow”, “WebBrowsing”, etc., as shown in Figure 3.1.

The corresponding sequences and coding parameter configurations are described

in JCTVC SCC Common Testing Conditions (CTC) document [75].

21

Figure 3.1: Sample Frames from SCC Standard Sequences

For Intra-frame coding study, to avoid duplicate CU samples in the training

set, we extract 10 sample frames from each sequence whose pixel-wise temporal dif-

ference against the previous frames are the largest over luma (i.e., Y-Component).

The selected frames (in Table 3.1) are coded using All-Intra (AI) configurations

under QP=22, QP=27, QP=32 and QP=37, respectively. The mode selection

and partition decision labels derived from SCM-4.0 and HM-16.4 encoder are used

as the ground-truth data for the following statistical studies, encoding module

machine learning training and transcoding heuristic derivation.

For Inter-frame coding statistical study, the first 10 frames from each sequence

are encoded using Low-Delay with P-frame (LDP) configuration. Only data from

the Inter-frames are collected. We assume that the mode distribution can be

generalized to the new SC videos. Since the mode and partition decisions are

quantization-dependent, the simulation data for QP=22 and QP=37 cases are

provided for comparison purpose.

22

Table 3.1: Intra-frame Coding Sample Frame Selection

Sequence Sample Frame Index
Map 0, 484, 73, 151, 112, 100, 61, 65, 102, 63
WebBrowsing 0, 286, 100, 67, 254, 8, 34, 144, 120, 188
Programming 0, 73, 568, 598, 43, 70, 45, 38, 244, 48
SlideShow 0, 3, 27, 474, 170, 169, 171, 167, 168, 266
FlyingGraphics 0, 278, 144, 111, 141, 84, 100, 73, 171, 240
Desktop 0, 463, 501, 422, 480, 479, 508, 128, 30, 31
Console 0, 418, 130, 599, 439, 137, 509, 465, 419, 429
Basketball 482, 540, 538, 376, 534, 504, 409, 479, 493, 439
MissionControlClip2 209, 255, 211, 154, 158, 206, 259, 161, 260, 151
MissionControlClip3 0, 478, 146, 481, 479, 475, 362, 483, 474, 365

3.2 Intra-Frame Mode and Partition Statistics

The Intra-frame partition distribution using HM-16.4 and SCM-4.0 are sum-

marized in Table 3.2. The statistics demonstrate that the total non-partitioned

block percentage of SCM-4.0 is greater than the percentage using HM-16.4. It co-

incides with the reasoning as illustrated in Figure 2.2, that the inhomogeneous SC

block can be efficiently coded using IBC or PLT mode without further splitting.

Besides, larger CUs are more likely to be further partitioned. Till CU16 level, the

partition decision using SCC becomes almost unpredictable.

Table 3.2: Intra-frame CU Partition Statistics
CU Width QP HM Split HM Unsplit SCM Split SCM Unsplit

64 22 91.27% 8.73% 90.37% 9.63%
64 37 86.14% 13.86% 84.80% 15.20%
32 22 79.88% 20.12% 82.75% 17.25%
32 37 73.24% 26.76% 78.50% 21.50%
16 22 69.77% 30.23% 49.06% 50.94%
16 37 65.14% 34.86% 44.84% 55.06%

The Intra-frame mode distribution statistics using SCM-4.0 is provided in Table

3.3. Statistically, SCM-4.0 uses a large proportion of SCC modes to compress

23

screen contents. At CU64 level, PLT mode and IBC-Inter mode are disabled by

default for complexity consideration. The IBC mode utilization increases as CU

size decreases, since that smaller blocks have higher likelihoods to find perfect or

good matches. PLT mode does not have a significant utilization percentage at all

CU levels but consumes a large bitrate consumption percentage, as studied in [72].

Table 3.3: Intra-frame CU Mode Statistics
CU Width QP IBC Merge IBC Skip IBC Inter Intra PLT

64 22 0.46% 46.01% N/A 53.53% N/A
64 37 0.43% 29.44% N/A 70.13% N/A
32 22 0.49% 37.49% 4.29 29.01% 28.74%
32 37 0.91% 29.70% 3.01 33.31% 33.06%
16 22 1.39% 34.75% 10.52% 26.74% 26.61%
16 37 1.40% 34.37% 10.70% 27.04% 26.49%
8 22 5.41% 31.60% 18.03% 22.63% 22.33%
8 37 3.96% 32.49% 19.88% 22.02% 21.65%

The Intra sub-mode selection distribution using HM-16.4 is provided in Table

3.4. Different from natural videos, this distribution implies that screen contents are

dominated by purely horizontal and purely vertical graphical patterns. The four

major Intra sub-modes, i.e., Intra-Planar, Intra-DC, Intra-Horizontal and Intra-

Vertical consume a large percentage of Intra sub-mode usage (i.e., from >65% up

to >90%).

Additionally, visual analysis and CU coding bitrate is evaluated. If SC block

pattern is simple (e.g., a bicolor CU containing two horizontal stripes, etc.), the

RD decision becomes unpredictable among PLT, IBC and Intra modes. However,

the CU bit-consumptions using all these modes are relatively close. Smoothly-

varying CUs (mostly from natural video region) will be coded primarily using DC

or Planar without further partitioning. For SC blocks, if a child sub-CU can find a

perfect match, SCM encoder will mostly choose to partition. If all the sub-CUs in

24

Table 3.4: Intra-Submode Statistics
CU Width QP Planar DC Horizontal Vertical Others

64 22 7.79% 7.04% 27.39% 47.99% 9.80%
64 37 14.40% 9.02% 27.85% 32.59% 16.14%
32 22 5.83% 10.17% 45.86% 25.22% 12.92%
32 37 9.49% 9.81% 43.38% 21.74% 15.59%
16 22 8.37% 5.92% 43.52% 21.30% 20.89%
16 37 10.71% 6.37% 37.91% 21.07% 23.95%
8 22 8.05% 5.39% 30.73% 25.61% 30.23%
8 37 10.26% 6.20% 26.08% 23.07% 34.39%

the current block cannot find good matches, SCM encoder will preferably choose

PLT mode for the whole block without further splitting.

3.3 Inter-Frame Mode and Partition Statistics

The Inter-frame partition distribution using HM-16.4 and SCM-4.0 are pro-

vided in Table 3.5. The Inter-frame mode distribution using HM-16.4 and SCM-

4.0 are provided in Table 3.7 and Table 3.6, respectively. The statistics reveals

that “Merge” and “Skip” modes cover a large proportion. Since the computer-

generated contents are mostly noise-free, therefore, the stationary areas within SC

videos are more likely to find perfect temporal matches than natural videos and

therefore coded in Skip mode at larger block sizes.

Table 3.5: Inter-frame CU Partition Statistics
CU Width QP HM Split HM Unsplit SCM Split SCM Unsplit

64 22 19.06% 80.94% 19.09% 80.91%
64 37 13.41% 86.59% 14.99% 85.01%
32 22 47.10% 52.90% 47.82% 52.18%
32 37 44.95% 55.05% 44.49% 55.51%
16 22 51.38% 48.62% 33.76% 66.24%
16 37 49.18% 50.82% 31.74% 68.26%

25

Table 3.6: SCM-4.0 Inter-frame CU Mode Statistics
CU Width QP Intra PLT IBC Merge/Skip Inter

64 22 3.58% 0.00% 0.84% 94.29% 1.29%
64 37 5.56% 0.00% 0.69% 91.67% 2.09%
32 22 10.40% 2.03% 8.82% 65.26% 13.48%
32 37 6.27% 0.90% 8.48% 69.46% 14.89%
16 22 8.43% 1.45% 13.62% 63.48% 13.03%
16 37 2.36% 0.39% 9.61% 69.39% 18.25%
8 22 3.02% 1.70% 16.12% 58.42% 20.75%
8 37 0.89% 0.13% 12.55% 66.76% 19.68%

Table 3.7: HM-16.4 Inter-frame CU Mode Statistics
CU Width QP Intra Skip Merge Inter

64 22 1.74% 96.20% 1.67% 0.39%
64 37 2.07% 95.76% 1.46% 0.71%
32 22 5.83% 80.27% 8.85% 5.05%
32 37 4.73% 86.55% 4.96% 3.76%
16 22 9.19% 76.18% 8.65% 5.98%
16 37 6.74% 84.65% 3.82% 4.79%
8 22 8.69% 64.21% 18.53% 8.56%
8 37 5.32% 72.27% 14.92% 7.49%

3.4 SCM Complexity Distribution Statistics

We also conduct a survey on SCM-4.0 encoder complexity distribution, using

CPU tick counter to document the clock cycles consumed by the target encoding

mode. Even though this complexity profiling result may differ from platform to

platform, we assume the percentage of each mode will not vary significantly and

should reflect the encoder complexity distribution. The profiling is conducted at

each CU size, over different coding modes. The distribution for Intra-frame coding

and Inter-frame coding are provided in Table 3.8 and Table 3.9 respectively. Please

note this result only reflects the average complexity across sequences. The per-

sequence result may vary slightly, depending on the contents.

26

Table 3.8: SCM-4.0 Intra-frame Complexity Statistics
CU Width Intra IBC Merge/Skip IBC Inter PLT Total

64 6.93% 3.98% 0.00% 0.00% 10.92%
32 7.72% 6.44% 0.02% 2.34% 16.52%
16 7.44% 8.33% 6.65% 2.06% 24.48%
8 20.83% 4.87% 20.27% 2.11% 48.08%

Table 3.9: SCM-4.0 Inter-frame Complexity Statistics
CU Width Intra IBC PLT Merge/Skip Inter Total

64 2.80% 0.37% 0.16% 6.12% 13.11% 22.56%
32 2.16% 0.40% 0.40% 4.02% 14.72% 21.70%
16 1.42% 1.89% 0.29% 5.99% 17.71% 27.30%
8 1.77% 3.51% 0.25% 2.99% 19.72% 28.24%

Intra-frame complexity statistics from Table 3.8 coincides with SCM-4.0 im-

plementation. The IBC complexity at CU64 and CU32 levels are negligible since

IBC-Inter mode is disabled at CU64 level and IBC-Inter mode only checks 64 pre-

vious block vectors (BV) at CU32 level. At CU16 level, IBC complexity increases

due to the additional 1-D search within horizontal and vertical CTU line. At CU8

level, IBC complexity increases significantly due to the global hash-based search.

The major complexity is consumed by Intra and IBC-Inter modes. The CU8 Intra

mode and IBC-Inter mode together consume >40% of the total encoder complexity.

As shown in Table 3.9, the major Inter-frame complexity is consumed by Inter

modes (i.e., approximately 80%). This aligns with HM and SCM codec implemen-

tation that the Intra-frame modes can be fast-bypassed when temporally a perfect

matching block is found for the current CU. The major complexity is introduced

during the motion estimation (ME) stage, in which the motion vectors (MV) is

refined progressively until a convergence at sub-pixel precision.

27

Chapter 4

Fast Screen Content Encoding

Using Machine Learning

In this chapter, the proposed fast screen content encoding framework is pre-

sented, based on three pre-trained decision tree classifiers. The classifiers are

designed to either reduce the SCC mode candidates to be examined or to make

fast partition decisions, without changing the implementations of low-level Intra,

IBC and PLT modes implementation. Experimental results demonstrate signifi-

cant Intra-frame encoding speedup beyond anchor SCM software with a marginal

coding performance loss.

4.1 Fast SCC Encoder Workflow Overview

As illustrated in Figure 4.1, the proposed encoder includes three major clas-

sification processes: In the first process, the input image block is classified into

either a natural image block (NIB) or a screen content block (SCB). For NIBs,

28

only Intra modes will be considered at the current CU level, while for SCBs, only

SCC modes (i.e., IBC and PLT) will be checked at the current CU level. In the

second process, NIBs are classified into either “Partitioned Blocks” (P-Blocks) or

“Non-Partitioned Blocks” (NP-Blocks). P-Blocks will bypass the current level In-

tra mode and enter the next-level CU processing directly. For NP-Blocks, the

encoder will only evaluate the current level Intra sub-modes and immediately ter-

minate further splitting. In the last process, NP-Blocks are further classified into

either “Directional Blocks” (D-Blocks) or “Non-Directional Blocks” (ND-Blocks).

For ND-Blocks, the encoder checks both Intra-DC mode and Intra-Planar mode.

For D-Blocks, the encoder determines the dominant edge direction and then trig-

gers the corresponding Intra directional sub-mode. For simplicity and parallel CU

processing consideration, our classifiers make fast decisions based on the features

computed inside the current CU. Therefore, it is impossible for the classifier to

predict whether a block has a closely-matched block in the previously-coded area

using these features. Therefore, the block type classifier may erroneously classify

a “Natural Image alike Block” as an NIB, when this block happens to match a

previously-coded region and is coded more efficiently using an SCC mode. Because

such situation mainly happens at CU8 level, therefore, even for those CU8 blocks

classified as a NIB, we still check the IBC-Skip mode, because this mode only

checks a small number of candidates and can often find the best match without

going through full IBC search.

For each classification, we use a “soft-decision” classifier that outputs a decision

confidence level. When the decision confidence for a CU is below a preset thresh-

old, this CU is defined as a “Controversial Block” (CVB). Throughout this work,

the CVBs in the first classification process (i.e., “NIB vs. SCB Classification”)

29

Classifier 3:
Directional Block Classification

Classifier 1
Block Type Classification

SC

N

Y

N

Y

N

Y
Bits<RBFT_Thresh (CU_depth)

Y

Y
Classifier 2:

Partition Classification

N

CVB1

NIB or SCB or CVB1?

CVB

CVB2

N
Is

CU Intra-Frame Coding Entry

CU Size = 8x8?

Y N

Y

NIB

To Partition?

N
CU Size = 8x8?

CU Feature Extraction

Bypass Intra (CU_Depth)
CU_Depth = CU_Depth + 1

IBC_Skip_Merge (CU8)

Trigger DC and Planar
Sub-modes during

Trigger Intra Directional
Sub-mode during RMD

Terminate All Further RDO

Move to Next CU

Current CU Level
All Intra Sub-modes

IBC Mode RDO

PLT Mode RDO (CU_Depth)

Bits<RBFT_Thresh (CU_depth)

CU Size = 8x8?

CU_Depth = CU_Depth + 1

Figure 4.1: Fast Screen Content Encoding Workflow Diagram

30

are denoted as CVB1. The CVBs in the second classification process (i.e., “Par-

tition vs. Non-Partition Classification”) are denoted as CVB2. The CVBs in the

third classification process (i.e., “Directional vs. Non-Directional Classification”)

are denoted as CVB3. Two encoding configurations with different CVB handling

strategies are proposed. Under “Rate-Distortion Preserving” (RDP) setting, for

CVB1s, the encoder will evaluate both Intra and SCC modes at the current level

and then examine the RD performance with CU partition, where each sub-CU will

be processed according to the same workflow in Figure 4.1. For CVB2s, the en-

coder will evaluate all the Intra modes for the current CU level and then examine

the RD cost with CU partition. Under “Complexity Reduction Boosting” (CRB)

setting, rather than going through Intra mode full-RD evaluations, we allow fast

Intra partition and sub-mode decisions: For CVB1s, the encoder will firstly follow

the NIB branch in Figure 4.1 to evaluate Intra modes and then check SCC modes.

For CVB2s, the encoder will evaluate Intra mode at the current level with fast

directional block classification invoked and then proceed with CU partition and

sub-CU processing. For CVB3s, the encoder will evaluate all the Intra sub-modes

for both RDP and CRB settings. The confidence thresholds are chosen accord-

ing to the desired trade-off between the encoder Rate-Distortion(RD) performance

and complexity reduction. A higher confidence threshold configuration will pre-

serve coding efficiency better while a lower confidence threshold configuration will

reduce the encoder complexity more. Different threshold settings are allowed at

different CU levels, because larger CU mis-classifications may affect the coding

performance more than the smaller CU mis-classifications.

At CU64 level, by default, SCM already disables PLT and IBC-Inter modes due

to complexity consideration. According to the simulations, by further disabling

31

IBC-Merge and IBC-Skip modes at CU64 level, a 4.5% complexity reduction is

achieved with almost no BD-Rate loss, since the small amount of CU64 IBC-

Merge or IBC-Skip blocks can be also efficiently coded by CU32 level IBC-Merge

or IBC-Skip mode. Therefore, at CU64 level, only Intra mode is enabled and block

type classifier at this level is not designed.

When SCM finishes the RD-calculation for a specific mode, the optimal RD

cost will be updated and the corresponding best mode will be documented if the

current mode outperforms the previous best coding mode. Therefore, in addition

to reducing the mode candidates using the three classifiers, we further incorporate a

rate-based fast termination (RBFT) process in a similar formulation as described in

[3]. Basically, when the current mode bit-consumption is lower than our statistics-

based threshold (i.e., 8 bit in our configuration), we assume that the current coding

mode is sufficiently efficient and the remaining modes are terminated. RBFT

is invoked over SCB, CVB1s and CVB2s. RBFT also trades off the complexity

reduction and the coding efficiency. A larger RBFT threshold configuration will

terminate more CU mode checking and CU splitting and therefore promote the

encoding speedup while a smaller RBFT threshold configuration will preserve the

coding efficiency better.

4.2 Feature Extraction and Classifier Design

In this section, we describe the features used to drive these classifiers and the

criteria used to select the classifier type, the training methodologies and the final

trained decision tree structures.

32

4.2.1 Feature Selection

Statistically we have some prior knowledge on SC videos and the relationships

between SC image patterns and mode selection. For instance, homogeneous regions

are more likely to be encoded in larger CUs with Intra mode. PLT-coded CUs are

more likely to contain fewer distinct colors and sharp edges. Discontinuous-tone

SC areas are more likely to be encoded using IBC or PLT modes. Larger CUs are

more likely to be further partitioned than smaller CUs, especially under low QP

settings, and so on.

With such prior knowledge, we directly derive features for our fast mode and

partition decision tasks and then apply the supervised-learning approach, rather

than learning the features from the raw image blocks using deep learning tech-

niques. The features used to train different classifiers are summarized as follows.

Feature 1 : Sub-CU Horizontal and Vertical DC Difference (HVDD), as formu-

lated in (4.1), (4.2) and (4.3), where HDD and V DD are intermediate horizontal

and vertical components of sub-CU DC value difference between horizontally and

vertically adjacent sub-CUs. The sub-index indicates the corresponding sub-CU

location. For instance, DC1 corresponds to the DC value of the first sub-CU lo-

cated at the upper-left corner of the current CU. A CU with a smaller HVDD

value has a stronger horizontal or vertical directionality.

HDD = |DC1 −DC2|+|DC3 −DC4| (4.1)

V DD = |DC1 −DC3|+|DC2 −DC4| (4.2)

33

HVDD = min (HDD,V DD) (4.3)

Feature 2 : CU Variance as defined in (4.4), where Y (x, y) is the luminance value

at pixel location (x, y), and Ȳ is the average luminance value over the current CU

and N is the CU width. Variance is a good indicator of block smoothness. A CU

with smaller variance is less likely to be further partitioned.

σ2 =
1

N2

∑
(x,y)∈CU

(Y (x, y)− Ȳ)2 (4.4)

Feature 3 : CU Gradient Kurtosis (GK). In order to evaluate whether a block

has a dominant direction, we compute the histogram of the gradient orientation and

then compute the orientation histogram kurtosis, which measures the histogram

peakiness. To calculate this feature, the CU gradient maps are firstly derived by

convolving the input image with “Sobel” masks. Let YH(x, y) and YV (x, y) denote

the horizontal and vertical gradient at pixel location (x, y) and Mag(x, y) and

Ang(x, y) denote the magnitude and orientation of the gradient computed based

on YH(x, y) and YV (x, y). We firstly apply a threshold (with a value of 30 for CU64

and CU32 and 10 for CU16 and CU8) on gradient magnitude map to filter away

small local texture variation. From these thresholded gradient maps, we compute

the gradient angle histogram G(θ), which denotes the sum of gradient magnitudes

of all pixels for each gradient angle θ between 0◦ and 180 ◦ (exclusive) with a

stepsize of 1◦. Finally, GK is derived as in (4.5), where Ḡ is the average gradient

magnitude over the entire gradient direction histogram.

34

GK = N2

∑
θ∈[0,180)

[
G(θ)− Ḡ

]4(∑
θ∈[0,180)

[
G(θ)− Ḡ

]2)2 (4.5)

Feature 4 : CU Gradient Magnitude Peak (GMP), which is the gradient mag-

nitude that achieves the peak over the gradient magnitude histogram (excluding

zero-gradient). GMP indicates the most frequent nonzero gradient magnitude in

a CU. SCBs usually consist of sharper edges and therefore have larger GMP val-

ues. The reason that we exclude zero-gradient is because such gradient is most

likely to be the peak value in the majority of the blocks and does not facilitate the

differentiation between NIBs and SCBs.

Feature 5 : Zero Gradient Percentage (ZGP), defined as the ratio between

the pixel number with zero gradient magnitude and the CU area. SCBs mostly

contain a large area of constant background color and therefore have larger ZGP

than smoothly-varying NIBs.

Feature 6 : CU Color Number (CN). To calculate this feature, RGB or YUV

components are firstly combined into a 24-bit “color triplet”. The number of

distinct “color triplets” inside the current CU is counted to derive CN .

4.2.2 Classifier Selection

In recent years, several groups have considered the application of machine learn-

ing techniques for fast mode decisions in video coding and transcoding applica-

tions (e.g., [43][17][51]). In this work, several popular supervised learning methods

are evaluated, including “Supported Vector Machine” (SVM), “Neural Networks”

(NN) and “Decision Tree” (DT). All these three classifiers provide a similar ac-

curacy for our classification task when the same feature set is used. For SVM,

35

because our data samples are not linearly separable, “Gaussian Radial Basis Func-

tion Kernel” (RBF) is used to implicitly map input features onto high-dimensional

space. Therefore, all the supporting vectors (SVs) derived during the training

stage have to be stored within the encoder memory for future prediction and the

number of SVs tends to grow larger when training samples are increased. For in-

stance, the number of SVs is over 1600 on average when we include 10,000 random

training samples. This will not only consume valuable encoder on-chip memory

but also make the resultant classifier less adapted to new data. For the NN, we

used a single hidden layer structure and optimized the number of hidden nodes

and other network parameters through a validation process. Both NN and DT

involve minimal processing complexity and can be incorporated into the encoder

easily. However, the derived NN classifier structure (including weighting factors,

bias terms, etc.) does not provide a good interpretation. DT training model can

be easily implemented as a set of “if-then” rules. These derived conditions typ-

ically coincide with human observations and analytical reasoning, which provide

valuable insights about the features and what ranges of the features are typically

associated for different classes. Taken into account the prediction accuracy, model

simplicity and interpretability and memory consumption, decision tree is adopted

as our learning model.

4.2.3 Classifier Training

All the classifiers are trained separately for each CU size. Our training data

initially contains totally 191200 CU64 samples, 764800 CU32 samples, 3059200

CU16 samples and 12236800 CU8 samples from the sample frames introduced in

Table 3.1 for QP=22, QP=27, QP=32 and QP=37, respectively. If the higher CU

36

level ground-truth decision is “Not to Partition”, all its sub-CU data samples will

be deactivated and removed from our training set. Since we have sufficient sam-

ples, cross-validations are assumed unnecessary and thus not used. For simplicity,

over each CU level, we randomly select half the samples to form the Training Set

(TRS) and the other half samples to form the Validation Set (VLS). TRS is used

to derive the DT model and parameters (e.g, the decision variables and the deci-

sion thresholds at each tree node) and VLS is used to evaluate the generalization

error and prune the derived trees. Experimental results demonstrate that the di-

vision setting between TRS and VLS will not change the VLS prediction accuracy

significantly since we have sufficient training and validation samples.

The ground-truth mode and partition decision labels for CU samples are ob-

tained by encoding the sample frames in Table 3.1 using SCM-4.0 encoder using

AI encoding configuration and default settings as in [75]. For each CU sample, if

the entire CU (including its sub-CUs, if partitioned) is encoded using Intra mode,

the block is labeled as an “NIB”. If the entire CU is encoded using an SCC mode

(either IBC or PLT), or if at least one sub-CU is coded using an SCC mode, the

CU is labeled as an “SCB”. The training is implemented using MATLAB built-in

Classification and Regression Tree (CART) module in “Statistics Toolbox” (Ver-

sion 8.3) [46].

The feature priority is determined based on maximum deviance reduction (or

equivalently, the cross entropy). Namely, the feature that provides larger deviance

reduction is given a higher priority and appears earlier in the decision tree. We

use the sample number in the DT node as the stopping criterion and stop splitting

a node as soon as the total number of training samples in the node is less than or

equal to 1% of the TRS size. Then the tree structure is progressively pruned node

37

by node backward while we track the VLS prediction accuracy until the maximum

is acquired.

4.2.4 Block Type Classification

In this process, a decision tree is trained using all the features to classify the

incoming CUs as either an NIB or an SCB. Training blocks for NIBs include

blocks coded fully using Intra-mode. Training blocks for SCBs include blocks

coded using IBC and PLT modes only, or a mixture of Intra and SCC modes. The

derived decision trees for different CU levels after pruning are provided in Figure

4.2, Figure 4.3 and Figure 4.4, respectively. Please note that in this design, at

CU64 level, only Intra mode is enabled, as discussed in Sec. 4.1, so no block type

classifier is designed at this level.

For each decision tree leaf node, we show two numbers (in percentages) obtained

during the training stage. The top number (i.e., “node probability”) indicates the

percentage of samples going to this node among all the training samples. The

bottom number (i.e., “node accuracy”) reveals the percentage of samples correctly

classified among all training samples in that node. A low node accuracy indicates

that the samples landing in that node cannot be classified with high confidence.

In our work, we consider the node accuracy as the decision confidence. Any block

landing in a leaf node with confidence lower than a preset threshold in this process

will be defined as a CVB1. Recall that CVB1 will go through both the SCB and

NIB workflows for the mode and partition decisions.

38

NN

N

N N

N

NY

Y Y

YY

Y Y

ZGP < 0.1655?

GK < 49.5? GMP < 27.5?

CN < 282? VAR < 161?

VAR < 174? ZGP <0.8198?

NIB
17%

96.50%

SCB
54%

95.77%

NIB
1%

97.10%

SCB
12%

80.12%

NIB
1%

95.04%

SCB
3%

66.37%

NIB
5%

91.28%

SCB
7%

81.22%

Figure 4.2: CU32 NIB-SCB Classification Decision Tree

NN YY

NN

N

N N

N

NY

Y Y

YY

Y Y

ZGP < 0.0996?

Var < 349.6? GMP < 17.5?

CN < 123.5? VAR < 235?

CN < 86.5? ZGP < 0.6934?

NIB
17%

91.10%

SCB
44%

94.99%

NIB
5.5%

95.08%

SCB
10.5%

84.90 %

NIB
5.5%

70.48%

SCB
1%

87.88%

NIB
2%

60.49%

SCB
8%

85.59%

GK < 7.5? VAR < 4.37?

NIB
4%

83.32%

SCB
3%

55.47%

Figure 4.3: CU16 NIB-SCB Classification Decision Tree

39

N

NN YY

Y

N

N

N N

N

NY

Y Y

YY

ZGP < 0.0547?

Var < 1765? Var < 649.5?

CN < 45.5? C#<3.5?

VAR < 48?

SCB
27%

92.18%

NIB
2%

71.57%

SCB
14%

89.44%

SCB
11%

80.63%

SCB
9%

83.68%

NIB
8%

59.82%

VAR < 34.3?

NIB
5%

60.57%

SCB
7%

70.92%

CN < 31.5?

NIB
17%

85.23%

Figure 4.4: CU8 NIB-SCB Classification Decision Tree

4.2.5 Partition Decision

In this process, decision trees are trained to classify NIBs into either “Parti-

tioned Blocks” (P-Blocks) or “Non-Partitioned Blocks” (NP-Blocks) based on the

CU homogeneity. Statistically, NIBs with larger variance, sub-CU mismatch and

smaller gradient kurtosis are more likely to be further partitioned. Therefore, we

use features 1, 2, 3 to train this classifier over each CU level. HVDD and Variance

describe the Sub-CU homogeneity, while GK reflects CU orientation homogeneity.

P-Blocks with high confidence level will directly bypass current level Intra mode

selection and directly enter the next-level CU processing. NP-Blocks with high

confidence level will only examine the current level Intra mode and immediately

terminate further splitting. The trained decision trees for different CU levels are

provided in Figure 4.5, Figure 4.6 and Figure 4.7, respectively.

40

NN Y

NY

Y

HVDD < 0.014?

GK < 177?

NP-Block
17%

69.12%

NP-Block
3%

83.90%

Var < 0.61?

P-Block
3%

82.98%

P-Block
77%

96.94%

Figure 4.5: CU64 NP/P-Block Classification Decision Tree

NY

Y N

N

NY

Y

HVDD < 0.5?

GK < 1?NP-Block
23%

87.08%

NP-Block
13%

71.15%

Var < 573.115?

P-Block
23%

89.65%

GK < 79.5?

P-Block
36%

75.25%

NP-Block
5%

65.43%

Figure 4.6: CU32 NP/P-Block Classification Decision Tree

41

NY

Y N

N

NY

Y

HVDD < 1.5?

GK < 1.5?NP-Block
33%

87.46%

NP-Block
6%

82.95%

Var < 199.768?

P-Block
31%

81.84%

GK < 119.5?

P-Block
22%

73.24%

NP-Block
8%

69.46%

Figure 4.7: CU16 NP/P-Block Classification Decision Tree

4.2.6 Intra Sub-mode Decision

To classify NP-Blocks into “Directional Blocks” (D-Blocks) or “Non-Directional

Blocks” (ND-Blocks), features 1, 2, 3 are used for training because directional CU

usually has a dominant direction that can be reflected by a larger GK value, while

non-directional CU is usually smooth with smaller HVDD, Variance and GK. The

resultant classifiers are provided in Figure 4.8, Figure 4.9, Figure 4.10 and Figure

4.11, respectively.

4.3 Experimental Results and Evaluation

The proposed machine learning based fast Intra-frame coding framework is

evaluated and compared with SCM-4.0 anchor software, following the CTC as

defined in [75]. 13 standard SCC sequences are evaluated under four QP settings

(i.e., 22, 27, 32 and 37) under All-Intra (AI) configurations. To verify that our

42

NY

NY

GK < 177?

Directional
21%

63.18%

Directional
43%

89.64%

HVDD < 0.0215?

Non-Directional
36%

74.58%

Figure 4.8: CU64 ND/D-Block Classification Decision Tree

NY

NY

GK < 145?

Non-Directional
26%

64.99%

Directional
33%

97.64%

GK < 1.5?

Directional
41%

51.91%

Figure 4.9: CU32 ND/D-Block Classification Decision Tree

Y N

NY

NY

GK < 95.5?

Non-Directional
5%

60.91%

Directional
24%

98.09%

GK < 12.5?

Directional
23%

74.18%

Var < 0.0215?

Directional
48%

58.97%

Figure 4.10: CU16 ND/D-Block Classification Decision Tree

43

Y N

NY

NY

Var < 2.5?

Non-Directional
12%

76.55%

Directional
10%

86.53%

GK < 13.5?

Directional
68%

78.97%

GK < 141.5?Non-Directional
10%

56.32%

Figure 4.11: CU8 ND/D-Block Classification Decision Tree

proposed classifiers are generalizable over new SC videos, we further evaluate our

proposed framework over unseen SC testing sequences (from [74], [69], [10] and

[7]) proposed in the previous JCTVC meetings. The coding performances are

evaluated using homogeneous Windows 7 (64-bit) desktops with Intel-i5 CPU (2.67

GHz dual-cores) and 4GB RAM.

The coding performance is measured using BD-Rate [2] against SCM-4.0 en-

coder. The complexity saving is measured directly using the relative reduction of

the encoding time, as defined in (4.6), where Tanchor is the encoding time of SCM-

4.0 encoder and Tproposed is the encoding time of the proposed encoder scheme over

the same sequence.

∆C =
Tanchor − Tproposed

Tanchor
× 100% (4.6)

Two sets of simulation results are provided with different encoding settings.

44

The “Rate-Distortion Preserving” (RDP) configuration focuses on coding efficiency

preservation, while the “Complexity Reduction Boosting” (CRB) configuration

focuses on encoder acceleration. The summarized experimental results are provided

in Table 4.1 and Table 4.2. ∆R and ∆C represent the BD-rate increment and

encoding time reduction in percentages, respectively. The sequences marked with

∗ are those videos whose 10 sample frames were selected for training. The results

reported are the full-sequence encoding statistics. The sequences marked with +

are not used during training and reported to validate the machine learning model

generalization. The detailed per-sequence per-QP encoding results can be found

in [18].

Table 4.1: Proposed Framework Coding Efficiency and Complexity Reduction
Evaluation using “Rate-Distortion Preserving” (RDP) Configuration

Sequence Resolution Category ∆R ∆C
FlyingGraphics∗ 1920×1080 Text & Graphics +1.02% -40.40%

Desktop∗ 1920×1080 Text & Graphics +1.93% -46.15%
Console∗ 1920×1080 Text & Graphics +1.78% -46.53%

WebBrowsing∗ 1280×720 Text & Graphics +1.51% -48.05%
Map∗ 1280×720 Text & Graphics +1.21% -34.73%

Programming∗ 1280×720 Text & Graphics +1.33% -36.46%
SlideShow∗ 1280×720 Text & Graphics +2.52% -52.99%

BasketballScreen∗ 2560×1440 Mixed Content +1.36% -33.53%
MissionControlClip2∗ 2560×1440 Mixed Content +2.57% -42.86%
MissionControlClip3∗ 1920×1080 Mixed Content +1.80% -38.55%

Robot∗ 1280×720 Animation +1.19% -32.02%
EBURainFruits+ 1920×1080 Camera-Captured +1.19% -30.15%

Kimono1+ 1920×1080 Camera-Captured +1.46% -31.62%
Doc+ 1280×720 Text & Graphics +1.34% -41.69%

PptDocXls+ 1280×720 Text & Graphics +1.54% -39.95%
TwistTunnel+ 1280×720 Text & Graphics +0.45% -33.92%

VideoConfDocSharing+ 1280×720 Text & Graphics +1.66% -42.63%
Viking+ 1280×720 Animation +1.42% -29.02%
Web+ 1280×720 Text & Graphics +0.91% -49.64%

WordEditing+ 1280×720 Text & Graphics +1.09% -43.87%

45

Table 4.2: Proposed Framework Coding Efficiency and Complexity Reduction
Evaluation using “Complexity-Reduction Boosting” (CRB) Configuration

Sequence Resolution Category ∆R ∆C
FlyingGraphics∗ 1920×1080 Text & Graphics +4.84% -46.33%

Desktop∗ 1920×1080 Text & Graphics +3.67% -50.63%
Console∗ 1920×1080 Text & Graphics +4.32% -51.01%

WebBrowsing∗ 1280×720 Text & Graphics +3.93% -57.13%
Map∗ 1280×720 Text & Graphics +4.15% -46.86%

Programming∗ 1280×720 Text & Graphics +5.09% -47.50%
SlideShow∗ 1280×720 Text & Graphics +3.82% -62.01%

BasketballScreen∗ 2560×1440 Mixed Content +4.18% -49.27%
MissionControlClip2∗ 2560×1440 Mixed Content +4.46% -57.50%
MissionControlClip3∗ 1920×1080 Mixed Content +4.29% -52.30%

Robot∗ 1280×720 Animation +3.26% -55.39%
EBURainFruits+ 1920×1080 Camera-Captured +1.54% -52.20%

Kimono1+ 1920×1080 Camera-Captured +1.38% -49.45%
Doc+ 1280×720 Text & Graphics +3.59% -53.32%

PptDocXls+ 1280×720 Text & Graphics +2.66% -47.76%
TwistTunnel+ 1280×720 Text & Graphics +4.27% -44.24%

VideoConfDocSharing+ 1280×720 Text & Graphics +3.69% -52.84%
Viking+ 1280×720 Animation +3.59% -55.30%
Web+ 1280×720 Text & Graphics +2.47% -51.79%

WordEditing+ 1280×720 Text & Graphics +3.71% -49.77%

Compared with the anchor SCM-4.0 software with default Full-Frame IBC (FF-

IBC) configuration, our proposed fast Intra-coding framework can achieve a com-

plexity reduction of 40% on average under RDP setting with 1.46% negligible

BD-loss. Under CRB setting, we achieve 52% complexity reduction on average

with 3.65% acceptable BD-Rate loss. Given the space limit, only YUV-444 results

are provided. However, the proposed framework and methodologies can be easily

generalized onto RGB-4:4:4 sequences and YUV-4:2:0 sampling format.

From the simulation results, the following conclusions can be drawn.

Firstly, the proposed framework has less gain over the sequences coded in

smaller CU sizes, because fewer blocks can be fast-terminated. For instance, “Map”

46

Table 4.3: Per-Classifier Contribution Analysis
Category T&G MC ANM CC
Beyond SCM ∆R ∆T ∆R ∆T ∆R ∆T ∆R ∆T
C1 +0.9% -31% +0.5% -36% +0.3% -23% +0.3% -21%
C1+C2 +1.1% -34% +1.0% -40% +1.2% -28% +1.2% -27%
C1+C2+C3 +1.1% -35% +1.1% -41% +1.5% -30% +1.3% -29%

and “Robot” sequences are dominated by small CU8 blocks and have the mini-

mum complexity reductions among all the sequences. The proposed framework has

larger complexity reductions over sequences coded in higher QP values, because

more SCBs can find a perfect or good match under higher QP settings during IBC

search.

Secondly, the derived machine learning model is generalizable to unseen SC

videos. We observe comparable BD-rate increase and similar complexity reduction

over the unseen SC sequences. Besides, the derived machine learning model does

not degrade the coding performances over camera-captured videos.

Thirdly, the proposed framework is scalable and controllable. By adjusting clas-

sifier confidence thresholds and RBFT thresholds, desired trade-off can be achieved

between the encoder efficiency and complexity for various applications. Addition-

ally, the per-classifier results over different contents, including “Text & Graph-

ics”(T&G), “Mixed Content”(MC), “Animation”(ANM) and “Camera-Captured”

(CC) are summarized in Table 4.3, in which “C1”, “C2” and “C3” represent the

first, second and third classifiers, respectively. From this result, we can see that

the complexity is primarily saved from the block type classifier. “Animation”

and “Camera-Captured” videos behave similarly in the proposed framework. The

contribution from Classifier 3 is relatively small, given that SCM-4.0 has already

embedded fast Intra mode candidate reduction algorithm [54].

47

Finally, the proposed machine learning based framework is compared and eval-

uated against some previous SCC fast encoding solutions. Table 4.4 demonstrate

that our proposed framework achieves substantially more complexity reductions

than the methods of [33], [66] and [81], with only slightly higher BD-rate increase.

Compared with [79], the proposed framework achieved a slightly higher complex-

ity reduction, but noticeably higher BD-rate loss. However, the method proposed

in [79] relies on stationary region detection in the current frame and reuses the

partition side information from the stationary regions in the previous frame. Our

proposed framework is self-contained and does not require temporal information

from other frames. When the access to the previous frame mode and partition

decisions is feasible, the proposed approach can be applied to the non-stationary

SC regions, to achieve more complexity savings than both the current approach

and [79].

Table 4.4: Coding Efficiency and Complexity Comparisons with Prior Work
Prior Work Codebase Complexity Reduction BD-Rate Loss

Kwon and Budagavi [33] HM-12.0 22%-31% 0.5%
Tsang, Chan and Siu [66] SCM-2.0 8%-29.2% 0.1%-0.7%
Zhang, Guo and Bai [81] HM-12.1 32% 0.8%

Zhang and Ma [79] SCM-3.0 39% 1.1%
Duanmu, Ma, Wang [17] SCM-4.0 37% 3.0%

Proposed (RDP) SCM-4.0 40% 1.4%
Proposed (CRB) SCM-4.0 52% 3.6%

48

Chapter 5

Fast HEVC-SCC Transcoding

Using Machine Learning

In this chapter, a fast heterogeneous transcoding framework is proposed to

convert baseline HEVC bitstream to HEVC-SCC bitstream for Intra-frame cod-

ing, as illustrated in Figure 5.1. Specifically, a block type classifier is trained to

accurately classify the incoming CUs into either “Natural Image Block” (NIB) or

“Screen Content Block” (SCB). The NIBs will directly inherit HEVC intra mode

and partition decisions, while the SCBs will be directly coded using SCC modes

(i.e., IBC or PLT). The proposed framework is implemented as a “pre-processing”

module in SCM software. Both CU statistical features (such as CU color quan-

tity, CU pixel variance, CU edge directionality distribution, etc.) and the decoded

HEVC side information (such as CU partitions, modes, residual, etc.) are jointly

analyzed to derive fast CU partition and mode decisions. Experimental results

demonstrate significant Intra-frame transcoding speedup beyond the full-encoding

solution with only marginal coding efficiency loss.

49

Figure 5.1: HEVC-SCC Transcoding Framework

5.1 Fast HEVC-SCC Transcoder Design

The proposed fast HEVC-SCC transcoder is designed and implemented as a

pre-processing module before Intra-frame mode selection, as compared in Figure

5.2. To summarize, the non-partitioned block mode and partition decisions will

be directly inherited during transcoding. Over HEVC-partitioned blocks, a block

classifier is designed and embedded in the encoder to categorize the incoming

blocks into either a natural image block (NIB) or screen content block (SCB). The

NIBs will directly bypass the current level CU processing, while the SCBs will be

directly coded using only SCC modes (i.e., IBC or PLT). This framework design

arises from the following observations.

Firstly, over flat, smoothly-varying or directional blocks illustrated in Figure

5.3, HEVC and SCC encoders will both use Intra-mode without further partitions.

Therefore, the HEVC-SCC transcoder may simply inherit the Intra sub-mode from

the HEVC bitstream and directly apply to SCC bitstream.

Secondly, SCC modes (e.g., IBC or PLT) enable “inhomogeneous” blocks to

be encoded in larger CU sizes. As illustrated in Figure 2.2, compared with Intra-

mode, PLT and IBC modes are mostly chosen at a larger CU size. Therefore, an

intuitive yet safe transcoding heuristic is that CU coding depth using SCC should

be shallower than the coding depth using HEVC. For example, in Figure 2.2, the

50

:
��/�
��	�!�
"��
�����

:
��/�
��	�!�
"��
�����

3�������
���5��
�����

=�

��I)�9��J�&�&K�
L��

L��

=�

=��

=��

=��

L��

L��

3����M�!�
����#��I	����$��

3����M�!�
����#��I	����$��

L���

'����

�������
�)�3K��

== (������� N 1�B

�

������

=��/�

������

�!��,���	����,��
%�������

��I)�9��J�&�&�K�

3%�
���'��

/"�	���

:(>�#��I	����$�

'3��*�	��:(>�#��I	����$

��I	�����J���I	�����O��

�+,-�I��I�

�������#���I	����$�

���%�+,-��

'��

!�
"��
���

������
���
�

:(>�

*�6������������

� !�*�	��:(>�#��I	����$

Figure 5.2: HEVC-SCC Transcoding Workflow

51

� � � �
Figure 5.3: Sample Intra-coded Blocks in HEVC and SCC

RD-optimal coding depth is 3 using SCC modes but 4 using conventional HEVC

modes.

Thirdly, computer-generated areas (such as icon, graphics) are usually coded

using PLT mode or IBC mode. Camera-captured areas (such as natural picture)

are mostly coded using Intra-mode. Therefore, a fast and accurate classification

between Screen Content Block (SCB) and Natural Image Block (NIB) can effec-

tively reduce the mode candidates from {Intra, PLT, IBC} to either {Intra} or

{PLT, IBC}. To design such a classifier, both decoded side information and CU

block-level features are jointly analyzed, as detailed in Section 5.2.

5.2 Block Type Classifier Design

Based on the statistical prior knowledge, a block type classifier is trained using

Neural Network (NN) to efficiently categorize the incoming CU into either an

“SCB” or “NIB”. Four features are selected as follows.

Feature 1 : CU Variance as defined in Eq. (4.4).

Feature 2 : CU Color Number (CN), defined as the number of distinct “color

triplets” inside the current CU.

Feature 3 : CU Gradient Kurtosis (GK), as defined in Eq. (4.5).

52�

� �

� �
Figure 5.4: SCB and NIB Intra-coding Residual Analysis (Top: SCB sample;
Bottom: NIB sample; Left: Image Pattern; Right: Residual Map using white
pixels to indicate nonzero entries)

Additionally, based on the encoder behavior, even though HEVC splits large

SCBs into smaller Intra CUs, the final residual image after splitting is mostly

sparse, whereas for NIBs, the residual image is less sparse, as shown in Figure

5.4 in the right column. In this example, the SCB residual (after Intra predic-

tion) has only 711 nonzero pixels while the NIB residual has 3273 nonzero pixels.

Accordingly, an additional residual feature is introduced, as follows.

Feature 4 : Residual sparsity (RS), defined as the L0 norm of residual image

block.

Our training and validation set (TVS) contains totally 5,940 CU64 samples,

23,760 CU32 samples, 96,480 CU16 samples from three SCC standard sequences

(i.e., “Console”, “Desktop”, “FlyingGraphics”) in CTC [75]. Since that our pre-

liminary study shows that IBC mode utilization at CU8 level is determined by

53

global search rather than local statistics, we do not apply block classification at

this CU depth to preserve the coding efficiency. For simplicity and without loss

of generosity, we randomly choose half the samples as the training set (TRS) and

the other half as the validation set (VLS).

Our ground-truth block labels are obtained by re-encoding the decoded HEVC

videos according to the SCC CTC [75] using SCM-4.0 encoder. If the entire block

is coded using the Intra mode, regardless of the Sub-CU partitions, the block is

labeled as an “NIB”. If the block is coded using SCC mode, either purely by SCC

or a mixture of Intra and SCC modes, the block label is labeled as an “SCB”.

Block classifiers over each CU size are trained with a 2-layer NN structure

with two “sigmoid” transfer functions between the input and the hidden layer and

between the hidden layer and the output, respectively. Considering that we have

sufficient samples, cross-validation is therefore assumed unnecessary and not used.

We tune the optimal hidden layer node numbers directly according to the prediction

accuracies over the VLS. In our models, the optimal hidden node numbers are 2,

3 and 3 for CU64, CU32 and CU16, respectively. The NN training is implemented

using MATLAB NN Toolbox (Ver. 8.1)[45].

The NN classifiers output a soft-decision between 0 and 1. A block with a

decision value closer to 1 has a higher probability to be an “NIB”. On the contrary,

a block with a decision value closer to 0 has a higher probability to be an “SCB”.

To preserve the coding performance, we apply a biased decision boundary value of

0.7 empirically. Namely, we classify a block as an “NIB” only if the NN decision

is greater than 0.7 and bypass the SCC modes at the corresponding CU depths.

The boundary selection provides a tunable trade-off between the coding efficiency

and the complexity saving. A reduced decision boundary configuration will classify

54

more blocks into the “NIB” category and thus increase the complexity reduction

but will simultaneously degrade the coding efficiency.

The proposed framework is further incorporated with Rate-based Fast Termi-

nation (RBFT) as introduced in Section 4.1. The rate thresholds are determined

by the encoding bits consumed at each CU depth and are conservatively chosen

to preserve the coding performance. The rate thresholds used are 20, 12 and 4 for

CU32, CU16 and CU8, respectively.

5.3 Experimental Results

Our proposed HEVC-SCC fast transcoding framework is evaluated as follows:

Firstly, 7 standard SCC sequences (with sample frames shown in Figure 3.1) are

encoded using anchor HEVC encoder (i.e., HM-16.4) according to common testing

conditions (CTC) with 4 QPs (i.e., 22, 27, 32 and 37, respectively). Afterward, the

HEVC bitstream is decoded into distorted YUV videos and the side information

(e.g., mode, partition, residual, etc.) is retrieved and cached. Finally, our proposed

transcoding system will load and analyze distorted videos and the side information

and re-encode decoded YUV videos using same QP configurations.

To verify the model generalization accuracies, the trained classifiers are applied

over four unseen SCC sequences (i.e., “Programming”, “SlideShow”, “WebBrows-

ing” and “BasketballScreen”) in the testing set (TSS) for performance validation.

The screen content re-encoding performances are evaluated using homogeneous

Windows 7 (64-bit) desktops with Intel-i5 CPU (2.67 GHz dual cores) and 4GB

RAM. The complexity reduction is directly measured by the encoding time reduc-

tion. Compared with the SCM-4.0, our proposed framework can achieve a 48%

55

re-encoding complexity reduction on average with only 2.0% BD-Rate loss. The

detailed simulation results are summarized in Table 5.1.

56

Table 5.1: Fast HEVC-SCC Transcoding Framework Performance

Sequence
Anchor Proposed Performance

Rate PSNR Rate PSNR ∆R ∆T

Programming

542536 49.62 549720 49.64

+1.05% -43%
386224 45.42 389408 45.31
267264 40.79 268360 40.85
192944 36.44 197568 36.45

SlideShow

373184 51.78 378696 51.66

+2.21% -51%
268352 47.95 270584 47.80
195680 44.46 197320 44.30
134056 40.48 134576 40.36

WebBrowsing

286456 52.53 290520 52.58

+3.08% -48%
232328 48.03 236392 47.80
169048 44.23 171344 43.93
127440 38.05 130504 37.77

BasketballScreen

127013 52.14 131481 51.93

+3.13% -46%
85529 48.27 86322 48.19
59184 45.26 60575 45.13
39551 41.23 39939 41.11

Console

627400 51.79 640960 51.95

+1.85% -49%
558648 47.25 569968 47.17
465992 42.97 473880 43.01
358304 38.47 363968 38.48

Desktop

708400 50.59 719056 50.57

+1.72% -48%
637944 46.13 646584 46.27
599872 40.30 611928 40.43
522744 35.40 539160 35.34

FlyingGraphics

1431048 48.75 1467784 48.74

+1.94% -50%
1105376 44.30 1130208 44.31
824000 40.32 829944 40.24
550840 35.95 559640 35.90

57

Chapter 6

Fast SCC-HEVC Transcoding

Using Statistical Mode Mapping

In this chapter, we propose a fast SCC-HEVC transcoding solution based on

statistical mode mapping techniques, as illustrated in Figure 6.1. This is the

first work addressing both Intra-frame and Inter-frame SCC-HEVC transcoding

and enables the backward bitstream-compatibility over the legacy HEVC devices.

Experimental results demonstrate that the proposed solution achieves a significant

transcoding speedup.

Furthermore, we generalize the proposed framework to support Single-Input-

Multiple-Output (SIMO) transcoding for adaptive streaming over the edge clouds,

to accommodate heterogeneous end users with different networks (e.g., WiFi, LTE,

etc.) and device constraints, such as battery life, display resolution, etc. Experi-

mental results demonstrate that the proposed framework realizes the parallel screen

content transcoding and achieves a significant transcoding speedup.

58

Figure 6.1: SCC-HEVC Transcoding Framework

6.1 Fast SCC-HEVC Transcoder Design

The fast SCC-HEVC transcoding workflow is designed as shown in Figure 6.2.

The design philosophy of the proposed framework is summarized as follows.

Firstly, over the flat, smooth or directional SC blocks, SCC and HEVC encoders

will both use Intra mode without further partitions. Therefore, the transcoder

may directly copy the Intra sub-mode from SCC bitstream and apply to HEVC

bitstream.

Secondly, for temporally-predictable blocks, HEVC and SCC encoders will both

use Inter mode (e.g., Merge, Skip or Inter). Therefore, the transcoder may directly

reuse the motion information (including reference frame index, motion vector, etc.)

decoded from the SCC bitstream. Even though Merge, Skip and Inter modes are

neighbor-dependent (i.e., the same block may choose a different motion vector when

its AMVP or Merge candidates get updated), the motion vector (MV) derivation

process can be mostly bypassed and therefore the major complexity can be saved

from the motion estimation (ME) and sub-pixel interpolation processes.

Thirdly, over PLT-coded blocks, the decoded index map (IM) reflects the CU

structure and texture directionality, as shown in Figure 6.3. When the index

map structure is purely flat, horizontal or vertical, during transcoding, the HEVC

encoder can directly trigger the corresponding Intra sub-mode and terminate CU

59

�

'
(�	

��������)!*�

$�

���
�������+,-�

�.���

(�	�

'

(�	�

�� ���

������������
���

������
���$���
������

��)!*�

$����
�������+,-�

�.���

(�	

'

'

(�	�

'
��

+���/-�

'
�

(�	0����1�������
�������212�

)�

$	�	���������	�����

3�����
�����4�5�

'
�

(�	�
�����!

���5�

����4��������
��+� �6�����-�

'

(�	

'

(�	

(�	�

'
�
� ���7��8�9195�

'
�

(�	�

'
�

(�	�
����1�4��������
��5�

0����1�������
�������212�

)�

$	�	���������	�����

�����!	�)�
��5

'

�������
�

(�	�
�*�!

���5�

(�	�
�����!

���5�

'
�

'
�!�������
��

��
��	��������:�4
;���
�'�1��� �

� 6������8�� 6������<�=

�
���%���������������
���+>�-�	�)!�
��:��

	�
��	��������:��
;���
���1���

����1�4���"
��7
����5�
�
���%����������"
��7
�����+=?-�	�)!�
��:��

	�
��	��������:��
;���
���1��� �

*���		�������@��������
��	 +� 6�����-

&�������"����3&/�+� 919-: �
;���
�������1���

� ���7��.�9195� *���		������ @��������
��	 +� 6�����-�

&������������ @������ �
���+� 6�����-�

0�4��

Motion Vector Reuse

4
��
���
����	���
��

������*�

$�4�������

�
���������	�)!�
���

*���		������!�
���+� 6�����-�

Motion Vector Relay

4
��
���
����	���
�

*�

$�4������

�
���	������������	�)!�
���

*���		������!�
���+� 6�����-�

��4/ �����!�������

�
����5�

�
������������

��)!)�

$5�

�����!�
���

+� 6�����-�

*���		�

�����!�
���

+� 6�����-�

*���		�

�����!�
���

+� 6�����-�

*���		�

�����!�
���

+� 6�����-�

�����!�
���

+� 6�����-�

4
;���
�'�1���

Figure 6.2: SCC-HEVC Transcoding Workflow

60

Figure 6.3: Sample PLT Block and Corresponding Index Map

splitting. Otherwise, the encoder can safely bypass the Intra-mode coding at the

current CU depth.

Fourthly, over IBC-coded blocks, the decoded block vectors (BV) may be used

to locate the matching block in the previously-coded area or in the reference frame.

Considering that the matching block is the same as or similar to the current CU,

therefore, the transcoder can infer the mode and partition from the matching block

and its neighbors. If all the 4x4 blocks covered by the matching block (marked

inside the yellow “examination area”) are coded using the same Intra sub-mode,

as illustrated in Figure 6.4, the current CU (marked as a green box) can directly

copy the same Intra sub-mode and terminate CU splitting. If all the 4x4 blocks

are Inter-coded and share the same MV and the same reference picture list and

reference frame index, as illustrated in Figure 6.5, the current CU may directly

reuse the MV and the corresponding reference picture. The final motion vector

mvfinal with respect to the reference frame can be calculated as in Eq. (6.1), where

bv denotes the block vector from the current CU to its IBC matching block (IBC-

MB) inside the current frame and mvmatching denotes the motion vector from the

IBC-MB to its inter-frame matching block (Inter-MB). The sum of these two terms

indicates the final motion vector from the current CU to its temporal matching

61

Figure 6.4: Block Vector Reuse for IBC-Intra Mode Mapping. Green Block: the
current CU; Black Block in dashed line: the matching Block; Blue Arrow: IBC
Block Vector; Yellow Blocks: Mode Examination Area; Each small blue square
represents a 4x4 image block.

block (i.e., the spatial-temporal relayed translational offset). Otherwise, if the 4x4

blocks do not share the same coding mode or the same motion (requiring same

motion vector, reference frame index), the current CU will be directly partitioned

without going through the current level CU processing.

mvfinal = bv +mvmatching (6.1)

Finally, as illustrated in Figure 2.2, PLT and IBC modes enable “inhomoge-

neous” blocks to be encoded at a larger CU size. Therefore, an intuitive yet safe

transcoding heuristic is that the coding depth in HEVC should be greater than

the depth in SCC over the same block. For the block in Figure 2.2, the optimal

coding depth is 3 using SCC modes but 4 using HEVC Intra mode. Such relation

holds for both Intra-frame and Inter-frame coding.

To sum up, in our proposed framework, the Intra-mode and Inter-mode mode

decisions are directly inherited from the SCC bitstream. To be specific, HEVC

62

Figure 6.5: Block Vector Reuse for IBC-Inter Mode Mapping. Green Box: the
current CU; Yellow Box: IBC Matching Block; Blue Box: Inter-frame matching
block of IBC matching block; Blue Dashed Line: the final “relayed” motion vector
from the current CU to its temporal matching block.

Intra coding will directly copy SCC Intra sub-mode. HEVC Inter coding directly

reuses the decoded motion vector. Even though “Advanced Motion Vector Pre-

diction” (AMVP) and “Block Merging” are both dependent on the spatial and

temporal candidates, however, the most computationally-expensive motion esti-

mation (ME) stage (consisting of Enhanced Predictive Zonal Search (EPZS) and

sub-pixel interpolation) can be avoided. To preserve rate-distortion (RD) perfor-

mance, merge/skip mode is always evaluated since it is computationally-light and

efficient.

For the blocks coded in PLT mode, for simplicity, fast termination is imple-

mented only over blocks with horizontal and vertical patterns, which are dom-

inantly distributed in SC videos, whereas the non-directional blocks (e.g., text,

icon, etc.) have to be split into very small Intra blocks to be homogeneous, and

therefore can be safely fast-bypassed at larger CU sizes. Please note that some-

times flat blocks are sporadically coded using PLT mode. Such blocks can be

63

treated as a special horizontal or vertical block in our framework.

For the blocks coded in IBC mode, three scenarios are considered. If (a) the

blocks in “examination area” are all coded in the same Intra mode, the current

CU can directly copy this Intra sub-mode without further partitioning. If (b) the

blocks in the “examination area” are coded using the same motion (i.e., requiring

the same reference list, reference picture index and motion vector), then the “re-

layed” motion vector (as illustrated in Figure 6.5) can be used to derive the final

MV from the current CU to its temporal matching block. Since IBC has been

used frequently in both Intra-frame and Inter-frame coding, such design achieves

a significant speedup. If neither condition (a) nor (b) is met, the IBC-coded block

can be directly partitioned without going through the current CU level processing.

Please note that in SCM-4.0, IBC and Inter are unified for hardware re-utilization.

Namely, IBC mode is treated as a special Inter mode with the reference frame

restricted to the current frame and the reference area restricted to the previously-

encoded area in the current frame. Therefore, for the “mixed” blocks, i.e., blocks

partially coded in Inter and partially coded in IBC, we still treat them as “parti-

tioned block” and will bypass the RDO of the current CU depth.

6.2 Single-Input-Multiple-Output Transcoding

To accommodate heterogeneous end users over different networks (e.g., WiFi,

LTE, etc.), as illustrate in Figure 6.6, SC contents are typically generated with

multiple copies with different quality levels (e.g., spatial resolution, frame rate,

bitrate, etc.) so as to support the adaptive SC video streaming services, in which

subscribers could request the most suitable version given the network and device

64

Figure 6.6: Illustration of on-demand SC video streaming

conditions, such as the bandwidth, display resolution, battery life, computing ca-

pacity, etc.

Screen content transcoding is one of the most straightforward solutions, where a

high-quality bitstream can be utilized to produce multiple bitstreams with reduced

quality levels using different combinations of spatial and temporal resolutions and

bitrates. The generated bitstreams can be chunked into video fragments to feed

in adaptive stream frameworks, such as the HTTP Live Streaming (HLS) [50], the

Dynamic Adaptive Streaming over HTTP (DASH) [59], etc.

Intuitively, the overall SC transcoding complexity is roughly n× the complexity

of transcoding a single SC bitstream, where n is the total number of different qual-

ity levels required to be achieved at the content server. (Please note n is simply

a loose approximation, e.g., the transcoding may introduce spatial and tempo-

65

ral resolution reduction.) Single-Input-Single-Output (SISO) scheme is inefficient

since it imposes a significant system complexity, buffer storage, processing delay,

and backbone bandwidth (i.e., all SC video copies are likely to be requested by

the end users.) As an alternative, leveraging on our previous work [68], we pro-

pose an SC Single-Input-Multiple-Output (SIMO) framework, to convert one single

high-quality SC video stream into multiple HEVC bitstreams in different qualities.

Exploiting the side information from the incoming bitstream and the correlations

among the output videos, the re-encoding complexity is significantly reduced, while

simultaneously the Rate-Distortion (RD) performances are preserved. Besides the

processing complexity, the proposed framework also benefits the system processing

delay and potentially would decrease the backbone network traffic from the central

SC content server to the edge tower, where the SIMO transcoder is deployed to

respond to different user requests.

Different from [68], in this work, SIMO is implemented between two hetero-

geneous bitstreams (i.e., SCC and HEVC). The SC content characteristics and

codec behaviors are taken into account when we customize the SC transcoding

algorithms. For simplicity, in this work, we only consider the quality-based SCC-

HEVC transcoding, in which a high-quality SC bitstream is transcoded into multi-

ple HEVC bitstreams with reduced qualities. Specifically, according to CTC [75],

in our configurations, a high-bitrate SCC bitstream (i.e., coded with QP=22) is

transcoded into four HEVC bitstreams (i.e., coded with QP=22, 27, 32, 37, re-

spectively). In [68], a simple yet effective heuristic is used to relate the HEVC

depth decisions among coding bitrates, as summarized in Eq. (6.2), where d(L),

d(H) and d(I) represents the coding depths of the low bitrate, high bitrate and

input bitrate, respectively.

66

d(L) ≤ d(H) ≤ d(I) (6.2)

In our configuration, the same relationship holds among the generated HEVC

bitstreams, as shown in 6.3, where d(QP37), d(QP32), d(QP27), d(QP22) denote the

coding depths for QP=37, 32, 27 and 22, respectively.

d(QP37) ≤ d(QP32) ≤ d(QP27) ≤ d(QP22) (6.3)

A similar approach as in [68] could be used to accelerate transcoding. Firstly the

transcoder decides and caches the coding depth information of QP=22. To encode

QP=37 bitstream, the maximum coding depths can be narrowed down based on

Eq. (6.3). Finally, to encode QP=27 and QP=32, the coding depth upper bounds,

i.e., d(QP22), and lower bounds, i.e., d(QP37), can be implicitly retrieved from the

previous coding decisions from QP=22 and QP=37 bitstreams. Such approach is

general and can be used safely regardless of video contents. However, such frame-

work imposes sequential dependencies among generated bitstreams. For example,

to compress QP=27 bitstream, depth decisions of both QP=22 and QP=37 are

needed. Therefore, this approach is more useful for sequential transcoding and the

coding decisions need to be stored for future lookup during transcoding.

In this work, a parallel transcoding scheme is proposed to directly convert SCC

bitstream into multiple HEVC bitstreams. Based on our simulation statistics, the

SC blocks are relatively insensitive to QP settings. On one hand the partition

decisions of SC blocks coded with different QP settings are very similar. On

the other hand, a minor SC block partition mismatch will not introduce visible

BD-Rate difference. As demonstrated in Figure 6.7, SC videos usually contain

67

�

�

�

�

Figure 6.7: HEVC Coding Decision Sensitivity Illustration (QP=22 vs QP=37).
Left column: Sample Frames from “Desktop”, “Console”, “Map”, “SlideShow”;
Middle column: Intra-frame Sensitivity Map using green blocks indicating con-
sistent mode and partition decisions; Right column: Inter-frame Sensitivity Map
using blue blocks indicating consistent mode and partition decisions

a large proportion of “QP-insensitive areas” (QPIA). For Intra-frame coding (in

the central column), in “Desktop”, the QPIA percentage is the highest (94.31%).

In “SlideShow”, the QPIA percentage is the lowest but still significant (67.06%).

Over the “QP-sensitive area” (QPSA), most blocks are coded in Intra-mode. For

Inter-frame coding (in the right column), the QPIA percentage varies depending

on the contents. The QPIA percentages are 92% and 56% for “Desktop” and

“Console” sequences, respectively.

Accordingly, in our SIMO transcoding configuration, the QP=22 HEVC bit-

stream can be directly transcoded using the default SISO algorithm as illustrated

in Figure 6.2 (namely, QP=22 SIMO and SISO cases are identical). For the other

68

bitstreams (i.e., QP=27, 32 and 37), additional mode checking are applied over

the partitioned blocks in the SCC bitstream (QP=22), particularly those blocks

consisting of sensitive sub-blocks, as illustrated in Figure 6.2 under the SIMO

workflow.

For Intra-frame coding, if the current block is mostly coded with SCC-coded

sub-blocks, the current block is more likely to be a “QP-insensitive” SC block and

can be directly partitioned. Otherwise, if the current block is mostly coded with

Intra sub-blocks, this block is more likely a “QP-sensitive” natural image block and

therefore goes through the current level Intra mode. For Inter-frame coding, if the

current block contains a large proportion of Intra sub-blocks, indicating there is

no good temporal matching block available, this block can safely bypass the Inter

mode at the current CU depth. If the current block contains a large proportion of

Skip or SCC mode, such block is more likely to be a QP-insensitive SC block and

therefore can be directly partitioned.

For simplicity, we introduce two tuning parameters α and β, as shown in Figure

6.2 under the SIMO workflow. α and β are pre-defined percentage thresholds used

to examine the current block quantization sensitivity for Intra-frame and Inter-

frame, respectively. The two parameters can be tuned to trade off the additional

mode checking complexity and the coding efficiency. Larger α or β configurations

lead to additional Intra or Inter mode-bypass and therefore boost the complexity-

saving, but simultaneously degrades the coding efficiency. Smaller α and β config-

urations lead to additional mode checking at larger block sizes and thus preserve

the coding performance better but simultaneously compromise the complexity re-

duction. In our configuration, α and β are chosen empirically with values of 0.9

and 0.5, respectively.

69

Besides, our proposed SCC-HEVC transcoding algorithm is self-adaptive. For

example, if the matching block region coding depths are adjusted due to the QP

change, the current IBC block coding depth and structure will be updated auto-

matically, as demonstrated in Figure 6.4 and Figure 6.5.

6.3 Experimental Results

Our proposed SCC-HEVC fast transcoding framework is evaluated and com-

pared with HM-16.4 anchor software for re-encoding performance evaluation.

For SISO configuration, 9 JCTVC standard SC sequences are coded using SCM-

4.0 following the CTC [75], with 4 QPs (i.e., 22, 27, 32 and 37). At the transcoder,

the SCC bitstreams are decoded into individual YUV videos with side information

cached. Finally, our proposed transcoder will load the cached side information and

re-encode the decoded videos into HEVC bitstreams in the same QP for All-Intra

(AI) and Low-Delay (LD) configurations.

For SIMO configuration, 9 JCTVC standard SC sequences are coded using

SCM-4.0 with QP=22. At the transcoder, the SCC bitstream is decoded into a

YUV video (corresponding to QP=22) with side information cached. Finally, our

proposed transcoder will load the side information from the decoded SCC bitstream

and re-encode the decoded videos (corresponding to QP=22) into HEVC using

QP=22, QP=27, QP=32 and QP=37, respectively, for AI and LD configurations.

The coding performances are evaluated using homogeneous Windows 7 (64-

bit) desktops with Intel-i5 CPU (2.67 GHz dual cores) and 4GB RAM. The coding

efficiency is measured using BD-Rate [2]. The complexity saving is measured

directly using the relative reduction of the re-encoding times, as defined in (6.4),

70

where TAnchor is the re-encoding time using HM-16.4 encoder and TProposed is the

re-encoding time of our proposed framework.

∆C =
TAnchor − TProposed

TAnchor
× 100% (6.4)

Compared with HM-16.4 anchor re-encoding, our proposed fast transcoding

framework can achieve complexity reductions of 51% and 49% on average for AI

re-encoding and 82% and 76% on average for LD re-encoding using SISO and

SIMO frameworks, respectively. Given the space limitation, only the YUV-444

results are provided. However, the proposed framework can be easily generalized

to RGB-4:4:4 color space and YUV-4:2:0 sampling format. The All-Intra (AI)

transcoding performances are summarized in Table 6.1 and Table 6.2 for SISO and

SIMO configurations, respectively. The Low-Delay (LD) transcoding performances

are summarized in Table 6.3 and Table 6.4 for SISO and SIMO configurations, re-

spectively. Based on the experimental results, the following conclusions are drawn:

Firstly, the proposed fast SCC-HEVC transcoding framework achieves a re-

markable transcoding speedup. Please note that the proposed framework is purely

software-based and therefore can be further improved with hardware acceleration.

Besides, in this work, only the basic framework is presented without specifically

optimizing each individual encoding module. Therefore, other fast video encoding

or transcoding algorithms can be easily incorporated into our framework for an

additional speedup.

Secondly, the Intra-frame coding acceleration mainly comes from BV-based

fast mode and partition reuse over the previously Intra-coded blocks. Besides, the

fast directional Intra mode selection over the PLT-coded blocks also provides a

visible speedup (i.e., ranging from 1%-5%). The speedup ratio also depends on

71

Table 6.1: Fast SCC-HEVC Transcoding Framework Performance (AI-SISO)

Sequence
Anchor Proposed Performance

Rate PSNR Rate PSNR ∆R ∆T

Desktop

187871 49.40 188545 49.35

+0.62% -44%
153474 44.69 154063 44.63
124247 39.56 124647 39.51
89900 34.30 90135 34.24

Console

92030 50.64 92559 50.54

+1.03% -50%
75228 45.68 75652 45.62
60140 40.60 60503 40.53
44254 34.98 44502 34.74

WebBrowsing

31361 50.71 31394 50.72

+0.20% -51%
24598 46.14 24626 46.13
17604 42.17 17632 42.19
9382 36.74 9405 36.70

Map

68215 46.76 68324 46.78

+0.42% -48%
44655 42.41 44797 42.43
27596 38.92 27811 38.92
16962 35.90 17196 35.90

Programming

62167 48.70 62379 48.66

+0.72% -51%
42291 44.62 42454 44.58
28621 40.05 28706 40.01
19591 35.77 19713 35.74

SlideShow

4388 54.49 4412 54.50

+1.17% -69%
2903 50.43 2928 50.43
2005 46.21 2025 46.19
1370 41.94 1389 41.78

BasketballScreen

212370 48.86 212897 48.86

+0.44% -52%
150110 44.83 150586 44.83
102654 40.71 103023 40.70
63978 36.55 64275 36.52

MissionControlClip2

221700 50.18 222303 50.09

+0.43% -53%
164565 45.23 164903 45.21
114858 40.68 115189 40.67
70381 36.11 70635 36.10

MissionControlClip3

165880 49.06 166182 49.05

+0.19% -48%
123646 44.27 124060 44.30
87469 39.64 87762 39.66
55290 35.22 55560 35.24

72

Table 6.2: Fast SCC-HEVC Transcoding Framework Performance (AI-SIMO)

Sequence
Anchor Proposed Performance

Rate PSNR Rate PSNR ∆R ∆T

Desktop

187871 49.40 188545 49.35

+0.64% -45%
153523 44.57 154108 44.52
124748 39.48 125202 39.43
90918 34.31 91230 34.24

Console

92030 50.64 92559 50.54

+1.08% -50%
75239 45.64 75692 45.60
59814 40.56 60212 40.49
44349 34.51 44641 34.20

WebBrowsing

31361 50.71 31394 50.72

+0.55% -51%
24637 45.18 24669 45.11
17684 41.15 17714 41.10
9516 35.75 9556 35.72

Map

68215 46.76 68324 46.78

+1.03% -43%
45064 40.88 45311 40.88
28397 36.42 28770 36.40
17608 32.79 18076 32.71

Programming

62167 48.70 62379 48.66

+1.00% -48%
43065 43.73 43255 43.67
29224 39.11 29419 39.06
19921 34.76 20157 34.72

SlideShow

4388 54.49 4412 54.50

+1.26% -67%
2915 48.18 2936 48.15
2025 44.19 2052 44.15
1376 40.07 1409 40.04

BasketballScreen

212370 48.86 212897 48.86

+0.68% -47%
151330 43.20 151976 43.17
104209 38.94 104736 38.91
66348 34.82 66979 34.79

MissionControlClip2

221700 50.18 222303 50.09

+0.60% -48%
165079 43.76 165562 43.72
115740 39.34 116261 39.33
72000 34.91 72567 34.89

MissionControlClip3

165880 49.06 166182 49.05

+0.43% -45%
124103 43.02 124638 43.02
87902 38.43 88358 38.43
55861 33.92 56320 33.95

73

Table 6.3: Fast SCC-HEVC Transcoding Framework Performance (LD-SISO)

Sequence
Anchor Proposed Performance

Rate PSNR Rate PSNR ∆R ∆T

Desktop

3956 50.28 3274 50.31

-18.16% -81%
3485 45.81 2869 45.81
3088 40.75 2516 40.80
2566 35.22 2095 35.31

Console

9970 50.53 9005 50.36

-12.14% -79%
8085 45.51 7143 45.42
6392 39.83 5575 39.99
4620 34.73 4028 34.79

WebBrowsing

756 50.19 396 50.44

-47.81% -84%
599 45.37 313 45.66
411 40.38 226 41.03
238 35.23 144 35.90

Map

2508 45.82 2505 45.78

-0.23% -82%
1563 41.66 1564 41.62
922 38.25 921 38.30
535 35.30 536 35.43

Programming

6813 48.04 6793 48.03

-1.02% -83%
3624 43.79 3618 43.84
1713 39.54 1713 39.67
805 35.61 817 35.58

SlideShow

845 51.57 863 51.70

+1.36% -82%
488 47.64 502 47.79
286 43.63 294 43.69
172 39.53 177 39.59

BasketballScreen

7220 48.92 7339 48.61

+1.96% -82%
3906 45.25 3930 45.25
2319 41.32 2338 41.31
1388 37.05 1427 36.90

MissionControlClip2

3813 50.21 3828 50.11

+0.93% -83%
2545 45.69 2550 45.68
1700 41.55 1707 41.46
1048 37.02 1052 36.96

MissionControlClip3

3268 48.25 2955 48.33

-12.76% -82%
2123 44.16 1876 44.24
1401 39.71 1219 39.79
890 35.18 779 35.25

74

Table 6.4: Fast SCC-HEVC Transcoding Framework Performance (LD-SIMO)

Sequence
Anchor Proposed Performance

Rate PSNR Rate PSNR ∆R ∆T

Desktop

3956 50.28 3274 50.31

-18.13% -78%
3482 45.67 2858 45.66
3084 40.65 2512 40.67
2561 35.25 2100 35.28

Console

9970 50.53 9005 50.36

-10.23% -72%
7942 45.37 6992 44.97
6265 39.63 5499 39.23
4593 34.25 4016 33.81

WebBrowsing

756 50.19 396 50.44

-47.90% -83%
590 44.59 303 44.69
409 39.72 212 39.83
240 34.68 138 34.52

Map

2508 45.82 2505 45.78

+1.99% -74%
1589 40.06 1593 39.94
953 35.54 964 35.41
565 31.97 578 31.79

Programming

6813 48.04 6793 48.03

+2.69% -72%
3800 42.85 3830 42.73
1846 38.22 1894 38.18
873 33.98 907 33.89

SlideShow

845 51.57 853 51.70

+3.07% -73%
504 46.11 513 46.05
293 41.85 298 41.70
179 37.77 189 37.52

BasketballScreen

7220 48.92 7339 48.61

+3.34% -76%
4059 43.34 4140 43.28
2405 39.22 2467 39.17
1452 35.13 1515 35.11

MissionControlClip2

3813 50.21 3828 50.11

+1.93% -81%
2583 44.08 2615 44.04
1728 39.91 1765 39.89
1074 35.71 1110 35.67

MissionControlClip3

3268 48.25 2955 48.33

-7.09% -78%
2156 42.93 1959 42.82
1393 38.50 1300 38.33
906 33.99 841 33.76

75

the contents. For sequences mainly coded in larger blocks, e.g., “SlideShow”, the

complexity reduction is more (≈70%), whereas over sequences mainly coded using

smaller blocks, e.g., “Map”, the complexity reduction is less (≈50%).

Thirdly, the Inter-frame coding acceleration mainly comes from the MV reuse

and the CU fast bypass/termination. Since SCC uses full-frame hash-based IBC

search [15] over CU8 blocks and Inter-frame hash-based motion search, the inher-

ited MVs from SCC bitstream sometimes outperform the local ME results in the

anchor HEVC configuration (with a default search range of 64 over the AMVP

candidates). Therefore, over particular sequences (e.g., “WebBrowsing”), we ob-

serve a significant BD-Rate gain even after the transcoding acceleration. Besides,

the motion vector relay technique applied over IBC blocks provides a significant

speedup (i.e., ranging from 6%-18%), depending on the IBC utilization in the

Inter-frames.

Fourthly, the proposed framework outperforms anchor HEVC Inter-frame cod-

ing significantly over the screen content areas with dominant temporal changes

(e.g., scene-cut). As shown in Table 6.4, for “WebBrowsing” sequence, a 48% BD-

Rate saving is achieved after transcoding speedup. This significant gain is achieved

from several transition frames, in which the inherited MVs from SCC bitstreams

significantly outperform the MVs derived from HEVC restricted motion search.

As illustrated in Figure 6.8, during the content transitions (e.g., from 8th frame

to 9th frame) in the webpage bottom panel (as enclosed inside the red square),

the Inter-frame mode and partition distribution have changed drastically. Since

SCM uses hash-based IBC and Inter search, therefore the inherited motion vectors

are more accurate than anchor HEVC ME candidates. Consequently, more blocks

are skip-coded or merge-coded and the bit-consumption is much lower (as shown

76

clearly from the heatmap). For this exemplar frame, anchor HEVC spends 566344

bits while our proposed transcoding algorithm only spends 164272 bits. Similar

behaviors are observed over “Desktop”, “Console”, etc.

Fifthly, for “Mixed-Content” Inter-frame coding, e.g., “MissionControlClip2”,

“MissionControlClip3” sequences, depending on the content temporal variation

locations, different behaviors are observed. As illustrated in Figure 6.9, though

the two SC sequences appear similar, in “MissionControlClip2”, mostly natural

video region (e.g., the man enclosed in the red box) has temporal motion, while

the text region on the right side is relatively static. In such case, the natural video

region is dominated by Intra mode and Inter mode with local search. Therefore,

after transcoding, we do not observe any BD-Rate saving. This also applies for the

“BasketballScreen”, in which the temporal motion is mainly located in the natural

video regions (e.g., the basketball player window). In “MissionControlClip3”, a

large proportion of text regions have temporal motion instead. In such case, the

inherited motion vectors from SCC bitstream mostly outperform the anchor HEVC

local ME and therefore leads to a coding efficiency improvement. To conclude,

when transcoding the SC regions (e.g., text, graphics, icon, etc.), the proposed MV

inheritance and MV relay schemes using side information from SCC bitstream can

outperform the anchor HEVC motion estimation results, whereas when transcoding

the natural video regions (e.g., natural picture), the derived MV does not differ

much from the anchor HEVC motion derivation and therefore does not introduce

BD-Rate saving.

Finally, the proposed parallel screen content SIMO transcoding framework sig-

nificantly reduces the transcoding complexity, calculated using the sum of the

re-encoding times for 4 QP settings between the anchor HEVC encoder and our

77

�

�

�

Figure 6.8: Transcoding Analysis of “WebBrowsing” (QP=22). Top Left: 8th
Frame; Top Right: 9th Frame; Mid Left: Anchor Transcoding Mode and Partition
Decisions; Mid Right: Proposed Transcoding Mode and Partition Decisions; Bot-
tom Left: Anchor Transcoding Bit-Allocation. Bottom Right: Proposed Transcod-
ing Bit-Allocation. Red box: Intra-coded blocks; Green box: Inter-coded blocks;
Blue box: low-bit blocks; Orange box: high-bit blocks using color depth to indicate
bit-consumption level.

78

�

�

Figure 6.9: Sample frames in “MissionControlClip2” (left) and “MissionControl-
Clip3” (right). Top and bottom: 1st and 11th frame, respectively. Red boxes
indicate the regions with dominant temporal motions.

proposed framework. Even though the complexity saving is less than the SISO

case due to the additional mode checking over the partitioned blocks in the SCC-

bitstream, the margin is relatively small (i.e., within 6%). For the sequences domi-

nated by temporal motion over SC region, e.g., “Desktop”, “Console”, the proposed

framework preserves the coding performance better. For the sequences dominated

by temporal motions over the natural video regions, the proposed framework intro-

duces larger but still marginal BD-Rate losses, e.g., “SlideShow”, “Programming”,

“BasketballScreen”, etc. Please note that the previous fast transcoding heuristic

proposed in [68] can be incorporated into our SIMO framework for an improved

coding performance when sequential transcoding is allowed. More details and ad-

ditional simulation results are provided in [21] and [19]

79

Chapter 7

Two-Tier 360 Video Streaming

with Prioritized Buffer Control

7.1 Overview of Two-Tier 360 Video Streaming

System

In this section, a novel two-tier 360 degree video streaming framework is pro-

posed, as illustrated in Figure 7.1. In this framework, a 360-degree video is par-

titioned into non-overlapping time segments, and each segment is encoded into a

base-tier (BT) chunk and multiple enhancement-tier (ET) chunks. A BT chunk

encodes the entire 360 view span (360◦ × 180◦) at a low bitrate to provide the

basic quality. BT chunks for future time segments are pre-fetched in a long display

buffer to cope with network bandwidth variations and user view changes and guar-

antee that any desired FOV can be rendered with minimum stalls at the client.

Each ET chunk encodes 360-degree video within a view window with a certain

view coverage (VC) (e.g., 120◦ × 90◦) centered at a certain direction. To provide

80

Figure 7.1: Two-tier 360 Video Streaming System

the quality differentiation, multiple ET chunks can be generated for the same view

window, but coded at different bitrates. For a complete coverage and a smooth

transition, the view windows of ET chunks in the same time segment are overlap-

ping and cover the whole 360 view span. All the pre-coded chunks are stored in the

streaming server. The client will decide and request a particular rate version from

a particular tier, according to the predicted view direction for the segment, the

predicted download bandwidth in the next request interval, and the buffer status

of each tier.

In our current implementation, the BT chunks are encoded at a basic rate,

which is expected to be sustainable even when the network bandwidth is low.

81

Therefore, the bandwidth wasted on covering scenes outside of the user FOV is

limited. Since a BT chunk encodes the entire 360-degree scene, it is always useful

for rendering no matter how dynamically a user changes her view direction during

the streaming session. In the extreme case of aggressive prefetching, as long as the

average network bandwidth is above the average coding rate of the BT, the end

user is guaranteed to receive a continuous 360 video experience with basic quality,

regardless of how instantaneous network bandwidth varies, and regardless of how

abruptly or frequently the user changes her view direction.

The ET chunks are designed to improve the streamed video quality whenever

there is additional bandwidth available after the base tier chunks are delivered.

Since both future available bandwidth and user viewing direction are generally

unknown, ET chunks will be prefetched in an opportunistic fashion, with the help

of available bandwidth estimation and view direction prediction. Specifically, at

time t, when additional bandwidth is available, one can prefetch an ET chunk for

t + ∆ covering the predicted view window at that time. As studied in [56], the

long-term head motion prediction is very difficult. Therefore, the ET chunks in our

system are prefetched in a relatively shallow buffer (e.g., up to 5 second ahead)

so that the delivered view window mostly coincides with the actual user FOV.

When user view directions are predicted accurately and ET chunks are received

successfully, the client video player can combine the ET chunk with the prefetched

BT chunk for an enhanced quality. Even when the view prediction fails (e.g.,

due to unexpected head motion) or when the requested ET chunk does not arrive

promptly before its deadline (e.g., due to sudden bandwidth decrease), the client

can still render the desired view with basic quality from the prefetched BT.

82

7.2 Prioritized Buffer Control Based 360-degree

Video Streaming

We formulate two-tier 360 video streaming as a dynamic scheduling problem.

Similar to the Dynamic Adaptive Streaming over HTTP (DASH) [58] framework,

we consider the scheduling as a discrete time process. At each time slot, a client

strategically prefetches video chunks from both tiers based on view direction and

available bandwidth predictions. The goal is to maximize the rendered video qual-

ity of the streaming session, while both the network bandwidth and user view

direction may vary over time. We propose to set up strict priority between mul-

tiple design objectives and develop scheduling algorithms to achieve the desired

priority. In our current design, we believe that playback continuity is the most

important and therefore we give the highest priority to download the base tier

chunks in near future so that we can always render a basic-quality version even

if the high-quality version is not available at the desired FOV, either due to view

prediction error or enhancement-tier buffer underflow. Similar to many DASH

work, we measure the buffer length using the buffered video time. If the current

base-tier buffer length is less than the target buffer length qbref , one should always

sequentially download the BT chunks until the BT buffer reaches qbref .

After downloading enough BT chunks, the residual bandwidth will be used

to download the ET chunks. In this work, we formulate the ET chunk schedul-

ing problem as a buffer-based feedback control problem, leveraging on the previous

study for buffer-based DASH [64]. Let qe(t) be the buffered video time for enhance-

ment tier at time t. When a chunk k with future playback time is prefetched, the

evolution of qe(t) can be approximated by the fluid model provided in Eq. (7.1),

83

where 1(·) is the indicator function, and b̄(k) is the average bandwidth when down-

loading chunk k, τ is the video duration for each chunk, se(k) is the size of chunk

k, and t
(s)
k , t

(f)
k is the starting and finishing time of downloading chunk k.

d

dt
qe(t) =

b̄(k)τ

se(k)
− 1(qe(t) > 0), t ∈ (t

(s)
k , t

(f)
k] (7.1)

One can select the request rate version of an ET chunk by setting up a target

buffer length qeref for the ET. If the current buffer length is less than qeref , one

should be conservative and choose a chunk with size se(k) < b̂(k)τ , the estimated

bandwidth budget, such that more video time can be accumulated; if the current

buffer length is greater than qeref , one can be more aggressive and choose a chunk

with size se(k) > b̂(k)τ , so that the accumulated video time can be reduced to qeref .

As shown in [64], traditional feedback control algorithms, such as Proportional-

Integral (PI) controllers, can maintain the target buffer length very well. The

target rate R̂ (k) of ET chunk k can be determined based on buffer evolution as

u(k) = KP (qe(t
(s)
k)− qeref) +KI

t
(s)
k∑
t=0

(qe(t)− qeref), (7.2)

R̂ (k) =
se(k)

τ
= min

[
(u(k) + 1),

∆(k)

τ

]
· b̂(k), (7.3)

where KP and KI are the proportional and integration gain control coefficients,

respectively, u(k) is the control signal, and ∆(k) is the remaining time till the

display deadline of ET chunk k.

The target buffer length tuple 〈qbref , qeref〉 for base and enhancement tiers reflects

the trade-off between robustness and quality. A large qbref achieves high robustness

against variations in both network bandwidth and user view direction changes, but

84

at the cost of reduced likelihood to download the enhancement tier chunks, lowering

the rendered video quality. A large qeref also achieves high robustness against

network bandwidth variation, but is vulnerable to user view direction changes,

simply because it is more difficult to predict user’s view direction into the far

future, and a prefetched enhancement-tier chunk is useless if its view coverage

does not cover the user’s actual FOV for that segment. In this study, we encode

the BT chunks at a basic rate expected to be sustainable even at low bandwidths.

The bitrates of the ET chunks, on the other hand, are more significant compared

to the BT. Target buffer length selection for ET chunks is a more interesting and

important challenge in our two-tier streaming framework. Therefore, we present a

formulation to determine the target enhancement tier buffer length qeref . Ideally,

we would like to maximize the rendered video quality. However, since the video

quality is generally monotonically increasing with the average video rendering rate

(in terms of bits per viewing area), we try to maximize the delivered video rate

instead. This design obviates the prior dependency knowledge between the video

quality and video rate, which is typically content dependent. Besides, it also leads

to a simpler solution, because our design parameter (i.e., qeref) directly impacts the

rate.

Because the base-tier buffer length in our system is long, we assume that

the base-tier chunks are mostly delivered in time for display, so that for each

video segment, we either receive only the base-tier or both the base-tier and the

enhancement-tier chunks. The base-tier chunks are coded to cover the entire area

of 360 video with the total rate of Rb (in bits/second) and therefore the video

rendering rate is Rb/Ab, where Ab is the viewing area of the 360 video. Let R̄e and

Ae denote the average enhancement-tier rate and the coverage area of each ET

85

chunk, respectively. Since that the predicted view direction for a delivered video

segment may not be the same as the actual user viewing direction, therefore, not

all received chunks for the enhancement-tier are useful. In general, only a portion

of each decoded frame in the delivered chunk may overlap with the user’s FOV

for that frame. Here we introduce α to denote the average ET View Prediction

Accuracy (VPA), namely the average overlapping ratio between the predicted view

coverage and user’s actual FOV, and γ to denote the average ET Chunk Pass Rate

(CPR), namely the likelihood that a requested ET chunk can be delivered success-

fully before its display deadline. Therefore, the expected Video Rendering Rate

(VRR) can be expressed as

RV RR(qeref) = γ · (α · (Rb

Ab
+
R̄e

Ae
) + (1− α) · Rb

Ab
) + (1− γ) · Rb

Ab

=
Rb

Ab
+ αγ · R̄e

Ae
,

(7.4)

where α and γ are both functions of qeref . Intuitively, α decreases as qeref

increases because the view prediction into far future becomes less reliable. γ in-

creases as qeref increases because a longer ET buffer is more likely to absorb the

temporary mismatch between the real network throughput and predicted band-

width. Obviously, there is an intrinsic trade-off between increasing α(qeref) (i.e.,

view prediction accuracy) and increasing γ(qeref) (i.e., ET chunk pass rate) when

selecting qeref . Assuming that one can predict the bandwidth for each chunk ac-

curately, and that there are sufficient rate versions for the same time segment to

match the available bandwidth, then we can approximate R̄e = T̄ − Rb, where T̄

is the average available bandwidth. Eq. (7.4) implies that we should select the

qeref that maximizes the product of α(qeref)γ(qeref) to maximize the delivered video

rate. In our implementation, we determine α(qeref) and γ(qeref) experimentally by

86

simulating our system using different qeref with a variety of network traces and view

traces. Please note that γ is determined by both network statistics and also video

rate versions provided on the streaming server. In our system, four different rate

versions are provided and used for simulations. α is mainly determined by view

prediction methodologies and the number and size of VCs in the enhancement-tier.

7.3 Enhancement Tier Target Buffer Length Op-

timization

The qeref in the proposed system is optimized off-line over the collected view

and network traces. The optimal operation point is jointly determined by the

average VPA (i.e., α) and the average CPR (i.e., γ). To illustrate, the VPA over

our concatenated view trace is plotted in Figure 7.2 (red curve). For simplicity,

we use the past 30 samples to predict future chunk viewing direction via a linear

model, i.e., y = At+b, where t are sample timestamps and y are the corresponding

viewing angles. The linear coefficients (i.e., A and b) are chosen to minimize the

sum of the least-square error between the ground-true and predicted user viewing

angles. Then we apply the derived linear model to predict the viewing angle for

the incoming ET chunk at t + δ, i.e., ŷ = A(t + δ) + b, where δ is a positive

time offset. The average CPR under our combined network trace is provided in

Figure 7.2 (blue curve). As shown from Figure 7.2, the optimal operation point for

our view trace and network trace is at qeref = 1, corresponding to the peak on the

purple curve. According to our formulation, the qeref that maximizes the product

of α and γ will maximize the VRR.

87

1 1.5 2 2.5 3 3.5 4 4.5 5

0.65

0.7

0.75

0.8

0.85

0.9

Target Buffer Length

V
P

A
 (α

),
 C

P
R

 (
γ)

, P
ro

du
ct

 (
α*

γ)

α (%)

γ (%)

α*γ (%)

Figure 7.2: Target Buffer Length Selection. Red curve: average view prediction
accuracy (α). Blue curve: average chunk pass rate (γ). Purple curve: product of
α and γ. The optimal operation point locates at the peak of purple curve.

7.4 360 Video Inter-Tier Rate Allocation

One critical issue in the two-tier system is how to allocate the rates between

the two tiers given the total video rate Rt (bits/second). One way to solve this

problem is by maximizing the expected quality for a video segment. We provide a

high-level formulation based on some simplistic assumptions. Because the base-tier

buffer length in our system is long, we assume that the base-tier chunks are mostly

delivered in time for display, so that for each video segment, we either receive only

the base-tier or both the base-tier and the enhancement-tier chunks. The base-tier

chunks are coded to cover the entire area of 360 video with the total rate of Rb

(in bits/second) and therefore the video rendering rate is R̃b = Rb/Ab (bits/pixel),

88

where Ab is the viewing area of the 360 video. Let Re and Ae denote the average

enhancement-tier rate and the coverage area of each ET chunk, respectively. Let

us assume that the ET video is coded with layer coding based on the base-tier

decoded video, so that the pixel bit rate for an enhancement tier coded pixel is

R̃e = Rb/Ab +Re/Ae. Since that the predicted view direction for a delivered video

segment may not be the same as the actual user viewing direction, therefore, not

all received chunks for the enhancement-tier are useful. In general, only a portion

of each decoded frame in the delivered chunk may overlap with the user’s FOV

for that frame. The perceived quality only depends on what is being rendered

on the screen based on the user’s FOV. The probability that a rendered pixel is

covered by the delivered ET chunk is α · γ. Assuming the BT and the ET coders

can be characterized by their respective rate-quality functions Qb(R̃) and Qe(R̃),

where R̃ is the coding bits per pixel, the expected rendered video quality with the

constraint Rb +Re = Rt can be expressed as

Q(Rb;α, γ,Rt) = αγQe(R̃e) + (1− αγ)Qb(R̃b)

= αγQe

(
Rb

Ab
+
Rt −Rb

Ae

)
+ (1− α)Qb

(
Rb

Ab

) (7.5)

Note that α and γ are both dependent on the ET prefetching buffer length.

Generally, γ also depends on Re. Here we assume that we can estimate the average

network bandwidth fairly accurately and we set Rt below the estimated bandwidth

with a safe margin, so that average γ does not depend on Re or Rb. Therefore, for a

given prefetching buffer length, α and γ can be considered as constants. Therefore,

the optimal Rb can be found by setting ∂Q
∂Rb

= 0, which yields

89

∂Qe

∂R

∣∣∣∣
R̃∗

e

=

(
1− αγ
αγ

)
Ae

Ab − Ae
∂Qb

∂R

∣∣∣∣
R̃∗

b

= β
∂Qb

∂R

∣∣∣∣
R̃∗

b

(7.6)

Equation (7.6) implies that Rb and Re should be chosen such that the Quality-

Rate (Q-R) slope at R̃e should be β times the slope at R̃b. Figure 7.3 demonstrates

the optimal R̃∗b and R̃∗e relations for two different β values for a hypothetical but

typical Q-R curve: β1=1/45 resulting from assuming αγ = 0.9 and Ab/Ae = 6,

and β2 = 3/35 from assuming αγ = 0.7. We see that if α and γ are both very

close to 1, then β is very small, and the optimal allocation is to let R̃b to be

very low. This corresponds to the case that view and bandwidth prediction are

both very accurate, so that a rendered pixel can almost always be covered by a

delivered ET chunk. In this circumstance, it is better not to waste bits to send

entire 360 scope in the base tier. When view and/or bandwidth prediction is less

accurate (α and/or β is lower), it is better to spend more bits on the base tier, to

ensure that pixels that are rendered from BT chunks provide sufficient quality. In

practice, we should set R̃b = max(R̃b,min, R̃
∗
b), to make sure that any FOV region

that are not covered by ET chunks due to either view prediction or delivery errors

can be rendered with a basic satisfactory quality, with rate R̃b,min. For a chosen

encoding method, one can derive or model the operational Q-R relationship, and

consequently determine Rb based in Eq. (7.6).

Following JVET common test conditions (CTC) and evaluation procedures for

360◦ video [1], the equirectangular encoding statistics for 4 Call-for-Evidence (CfE)

8K sequences [71] is used for Q-R model derivation. The rates R are HM-16.15

encoding bitrates (in kbps) with QP values of 22, 27, 32 and 37, respectively.

Weighted-to-spherically-uniform peak-signal-to-noise ratio (WS-PSNR) is used as

the objective quality metric. For simplicity, the QR relationship is modeled by a

90

Figure 7.3: Sample Rate-Distortion Operation Point Analysis

logarithmic function with two free parameters, i.e., Q(R) = a + b · logR, where a

and b are content-dependent parameters, and are chosen to minimize the fitting

mean-square-error (MSE) in our formulation. The sample R-D fitted curves are

provided in Figure 7.4. Experimental results demonstrate that the b values derived

from different sequences are pretty close (i.e., ranging from 2.6 to 3.9), indicating

a similar curve trend across different 360 videos. For simplicity, we average the a

and b values across videos to derive a universal model with a = 31.74 and b = 3.3.

Please note that in our rate allocation formulation, the optimal rate allocation only

depends on the sum and ratio between R̃∗b and R̃∗e and is therefore video-content

independent, as long as the video Q-R relationship follows a logarithmic pattern

(which is usually true, as validated in Figure 7.4). The closed-form solutions of

R̃∗e and R̃∗b are provided in Eq. (7.7) and Eq. (7.8), where β is defined in Eq. (7.6)

and is determined jointly by the view prediction accuracy (i.e., α), the chunk pass

91

rate (i.e., γ) and the BT and ET coverage configurations (i.e., Ab and Ae). η is a

network utilization control parameter defined in percentage.

R̃∗e =
Rt · η
1 + β

(7.7)

R̃∗b =
β ·Rt · η

1 + β
(7.8)

7.5 360 Video Streaming Experimental Settings

7.5.1 Video Selection

We downloaded two sample 360 videos1 (1920x3840, 30Hz) from YouTube, as

shown in Figure 7.5. For simplicity, we neglect the possible rate fluctuations caused

by the content variation and assume the video rate control is perfect such that each

ET video chunk is coded with a constant rate. Horizontally the 360 video is divided

into 12 View Coverages (VC). Each VC spans 120◦ with a 30◦ stride. Vertically

the video is divided into 3 VCs. Each VC spans 90◦ with a 45◦ stride. Therefore,

for each BT chunk, there are totally 36 VCs in the ET to cover different viewing

directions. For simplicity, we assume these independently-decodable video chunks

are coded with a fixed group of picture (GOP) length (i.e., 1 second). We also

assume that the user FOV has the same dimension as our VCs (i.e., 120◦ × 90◦).

1Sample videos download links: https://www.youtube.com/watch?v=-xNN-bJQ4vI and
https://www.youtube.com/watch?v=FzrkpXlRP1M.

92

0 10 20 30 40
34

36

38

40

42

Rate(Mbps)

W
S

−
P

S
N

R
(d

B
)

SkateBoarding (a = 32.68, b = 2.57)

data
fitted curve

0 5 10 15 20
34

36

38

40

42

44

Rate(Mbps)

W
S

−
P

S
N

R
(d

B
)

Chairlift (a = 33.73, b = 2.90)

data
fitted curve

0 5 10 15 20 25
32

34

36

38

40

42

Rate(Mbps)

W
S

−
P

S
N

R
(d

B
)

KiteFlite (a = 29.30, b = 3.80)

data
fitted curve

0 5 10 15
32

34

36

38

40

42

Rate(Mbps)

W
S

−
P

S
N

R
(d

B
)

Trolley (a = 30.27, b = 3.91)

data
fitted curve

Figure 7.4: JVET CfE 360◦ Video Rate-Distortion Curves

Figure 7.5: Sample Frames in Test Videos “MegaCoaster”, “Amsterdam”

93

0 200 400 600
0

20

40

60
Trace 1

Time(second)

B
an

dw
id

th
(M

bp
s)

0 200 400 600
0

20

40

60

80
Trace 2

Time(second)

B
an

dw
id

th
(M

bp
s)

0 200 400 600
0

50

100

150
Trace 3

Time(second)

B
an

dw
id

th
(M

bp
s)

0 200 400 600
0

100

200

300

400
Trace 4

Time(second)

B
an

dw
id

th
(M

bp
s)

Figure 7.6: Sample Network Bandwidth Traces after Scaling.

7.5.2 Network Bandwidth Traces

To simulate dynamic networks with significant bandwidth variations, we use

the traces collected over a 3.5G HSPA cellular network using the methodologies

described in [30]. Sample traces are illustrated in Figure 7.6. These traces represent

the most typical bandwidth variations in a cellular network. We further scale up

the original bandwidth sample values to adapt to the 4K/30Hz 360 degree video

bitrate range.

94

0 1000 2000 3000 4000 5000 6000

−150

−100

−50

0

50

100

150

frame

de
gr

ee
Sample View Trace

pitch
yaw

Figure 7.7: Sample view trace in yaw and pitch directions. Over yaw trace, the
-180◦ coincides with +180◦.

7.5.3 View Direction Traces

We collected the view direction traces from four users. Each user wears a

Google Cardboard with a Motorola Nexus-6 smart-phone playing our test 360

videos. Simultaneously, a head tracker equipped on Cardboard dynamically trans-

mits motion data (e.g., yaw, pitch, roll, etc.) to a nearby PC for data recording.

Figure 7.7 illustrates a sample trace captured over the “RollerCoaster” test se-

quence.

95

7.5.4 Proposed Two-Tier Solution

In our proposed Two-Tier system (TTS), the BT stores the 360 degree view seg-

ments (each lasting 1 second) coded at a low bitrate R0 =10 Mbps to provide basic

quality. The ET stores all possible VCs (120◦ × 90◦). The VCs are coded at three

different rates (R1, R2 or R3). The initial buffer length for BT is set to 20 seconds.

Upon complete reception of a chunk, the client estimates the available bandwidth

for the next chunk to be equal to the average throughput for downloading the last

chunk (from either BT or ET), i.e., b̂(k + 1) = s(k)/T (k) where s(k) is the size of

the last received chunk k and T (k) is the transmission time of chunk k. We select

the target video rates based on the network bandwidth cumulative distribution

function (CDF) in our traces. Specifically, R0+R1, R0+R2, R0+R3 are chosen at

40%, 60% and 80% percentile of the network bandwidth CDF, respectively. Fur-

thermore, the client predicts the viewing direction for segment n+1 through linear

regression based on the past 30 view samples and determine the VC to be fetched.

When the BT queue length is less than qbref , the client will always sequentially

download the BT chunks. When the BT queue length is above qbref (i.e., 10 sec-

ond), the client will download ET chunks with target rate R̂ (n+ 1) according to

Eq. (7.2) and Eq. (7.3). Let Rn+1,L, Rn+1,M and Rn+1,H denote the actual rates of

the low-quality, medium-quality and the high-quality versions of incoming chunk

n+ 1 for the target VC, respectively. If R̂ (n+ 1) ≥ Rn+1,H , the client will request

the high-rate ET chunk. If R̂ (n+ 1) < Rn+1,H and R̂ (n+ 1) ≥ Rn+1,M , the client

will request the medium-rate ET chunk. Otherwise, the client will request the

low-rate ET chunk.

We use the received video rendering rate to quantify the system performance.

Let Rb(n) indicate the rate of the BT chunk for time segment n and Re(n) denote

96

the rate of the ET chunk for a particular VC for time segment n. Re(n) = 0 if the

ET chunk is not available at the display time. We define wf as the overlapping

portion between the ground-truth FOV per frame (obtained from the ground-truth

view trace) and the VC of the downloaded ET chunk, wb the overlapping portion

of the desired FOV and the 360 view decoded from the BT. Therefore, the VRR

in Segment n is defined as V RR(n) = wbR
b(n) + wfR

e(n). We assume that the

rendered view covers 120◦ × 90◦ so wb=1/6. In the rare case when the BT buffer

is empty at the display time, V RR(n) = 0.

7.5.5 Benchmark Solution 1 (BS1): Full-360 Streaming

BS1 simulates the typical DASH streaming framework for 360 videos, in which

the entire equirectangular videos are pre-encoded using multiple rates. For a fair

comparison, we select the same rate setting as our proposed TTS (i.e., RB=R0=10

Mbps, RL=R0+R1, RM=R0+R2 and RH=R0+R3). The initial buffer length is

configured the same as TTS (i.e., 20 seconds) and the target buffer length is also

10 second. Similarly to TTS, the client estimates the sustainable transmission

rate for the incoming segment n + 1 to be equal to the measured throughput for

downloading the last received chunk n, and then accordingly chooses a rate to

request over the next segment n+ 1 using PI-controller. The VRR for the desired

view over each segment is therefore the rate of the downloaded chunk scaled by

wb = 1/6 and is 0 when the display buffer is empty.

7.5.6 Benchmark Solution 2 (BS2): VC-Streaming

In BS2, only VCs are pre-coded and stored on the server. Each VC covers

120◦×90◦ view scope similarly as our TTS. Each ET chunk is encoded directly with

97

four rates consistent with our proposed TTS (i.e., RB=R0=10 Mbps, RL=R0+R1,

RM=R0+R2 and RH=R0+R3). Similar to TTS, at time n, it predicts the view

direction at n+ 1 using the linear regression based on the past 30 samples. If the

requested segment does not arrive completely before its display deadline, VRR is

set with 0 over that second. Otherwise, we use the portion of the downloaded VC

that overlaps with the user desired FOV to calculate its VRR as wf · R, where

R ∈ {RB, RL, RM , RH}. To be fair, we apply the same PI controller and the initial

enhancement tier buffer length (i.e., 1 second) as in TTS configuration.

7.6 Experimental Results and Evaluation

Our proposed TTS is simulated and compared with the two benchmark solu-

tions. We evaluate the performance directly using the delivered Video Rendering

Rate (i.e, VRR) and Video Freeze Ratio (VFR). The delivered VRR is defined as

the received bits per rendered area, averaged over all displayed frames. The VFR

is the percentage of total time that video buffer underflows (i.e. no bits are avail-

able for the user FOV at the display time). Four different network traces (each of

600 seconds) and two view traces are used for simulation. For simplicity, the view

traces are played in loops for a total duration of 600 seconds. After configuring

the optimal qeref as introduced in Section 7.3, The PI-controller parameters are

chosen to maximize the ET chunk pass rate through an iterative search between

KP and KI over the concatenated network trace, where KP starts from 0.5 up to

1.0 with a stride of 0.1 and KI starts from 0 up to 0.20 with a stride of 0.01.

Firstly, the VRR simulation data using different ET buffer length (i.e., qeref)

configurations are provided in Table 7.1. The result coincides with our conjecture

98

in in Section 7.3 that the qeref that maximizes the product of the view prediction

accuracy (i.e., α) and the chunk pass rate (i.e., γ) will in turn maximize the received

video rendering rate.

Table 7.1: Video Rendering Rate in Different ET Target Buffer Length
qeref 1-second 2-second 3-second 4-second 5-second

VRR (Mbps) 49.80 49.15 47.10 46.24 45.13

The recipient video rendering rate (VRR) and chunk pass rate (CPR) using

two benchmark solutions and our proposed solution are summarized in Table 7.2.

Four network traces and two view traces are used for simulations, as visualized in

Figure 7.6 and Figure 7.7, respectively.

Based on the simulation results, the following conclusions can be drawn:

In BS1, the long buffer setting effectively absorbs the network bandwidth vari-

ations and the available bandwidth is well-utilized. However, due to the ignorance

of user FOV in streaming, the VRR is only 1/6 of the encoded rectangular video

rate.

In BS2, when bandwidth is sufficient, the high-rate chunks can be success-

fully delivered. The delivered VRR is maximized when the view prediction is

also accurate (particularly when the user viewing direction is relatively stable or

changing smoothly). However, when the bandwidth suddenly decreases, the shal-

low enhancement-tier buffer may occasionally underflow, resulting in annoying

frequent video freezes and severely degrade the user experience.

In our proposed TTS, the advantages of two benchmark solutions are inte-

grated. On the one hand, the base-tier long buffer can effectively absorb the errors

in both bandwidth estimation and view prediction, and therefore provides continu-

ous playback with minimum freeze. On the other hand, the received enhancement-

99

Table 7.2: Performance Evaluations against Benchmark Solutions in Average Video
Rendering Rate (Mbps) / Video Freeze Ratio (%)

Network
Trace

Solution RollerCoaster Amsterdam

1
BS1 2.8/12% 2.8/12%
BS2 10.8/27% 10.5/25%
TTS 7.9/6% 7.7/6%

2
BS1 5.9/4% 5.9/4%
BS2 27.0/10% 27.3/10%
TTS 21.1/4% 22.3/3%

3
BS1 9.0/1% 9.0/1%
BS2 40.2/2% 39.3/2%
TTS 36.6/0% 36.1/0%

4
BS1 23.0/0% 23.0/0%
BS2 93.1/8% 91.5/7%
TTS 108.0/0% 106.3/0%

tier chunks boost the quality when extra bandwidth is available. Compared with

BS1, a 3.7x gain in delivered VRR is achieved on average. The delivered VRR

margin between proposed TTS and BS2 is primarily caused by the base-tier rep-

resentation. Specifically, our BT is coded to cover the entire 360 video scope with

fixed rate R0 = 10 Mbps and only 1/6 of the total base-tier rate contributes to

the delivered VRR, resulting in an initial loss of approximately 8 Mbps. However,

when the network average throughput is large, this initial margin becomes negligi-

ble and our proposed TTS outperforms BS2, as shown from Trace 4 result in Table

7.2. Besides, with the prefetched base-tier, TTS is much more robust against sud-

den bandwidth decrease and view prediction error than BS2, and therefore has

much lower video freeze ratio (VFR).

100

Chapter 8

Conclusions and Future Work

8.1 Summary

8.1.1 Fast Screen Content Compression

In this thesis, we propose three frameworks to accelerate screen content encod-

ing and transcoding, as summarized below.

Firstly, a novel fast screen content encoding system is designed based on de-

cision tree classifiers. By exploiting CU features, three classifiers are trained and

incorporated into SC encoder for fast partition and mode decisions. Classifier 1

aims to categorize the incoming CU into either an “NIB” or an “SCB”. “NIB”

will be encoded using only Intra mode while “SCB” will be encoded using SCC

modes at the current CU level. Classifier 2 makes fast partition decision and

classifies “NIB”s into “Partitioned Block” (P-Block) and “Non-Partition Block”

(NP-Block), where P-Block will bypass the current level Intra processing and NP-

Block will terminate RDOs immediately after the current level Intra processing.

Classifier 3 further classifies NP-Blocks into either “Directional Blocks” (D-Block)

101

or “Non-Directional Blocks” (ND-Block) and only corresponding subset of Intra

sub-modes are examined. The trade-off between the encoding efficiency and com-

plexity can be flexibly tuned by adjusting the classifier confidence configurations

and the rate thresholds. The proposed framework achieves a 40% average complex-

ity reduction with only 1.46% BD-rate loss under “RD-Preserving” configuration

and yields a 52% complexity reduction with 3.65% BD-rate loss under “Complex-

ity Reduction Boosting” configuration over typical screen content videos under

All-Intra configurations.

Secondly, a novel HEVC-SCC heterogeneous transcoding framework is pro-

posed, based on screen content characteristics study and machine learning. In

our transcoding system, a neural network based classifier is trained to classify the

incoming CU into either an “NIB” or an “SCB”, based on the CU level features

and the decoded residual sparsity. Over “NIB”, our transcoding system mimics

the HEVC mode and partition behavior, while over “SCB”, the HEVC-partitioned

blocks can directly bypass the current level Intra mode and only examine the SCC

modes. Compared with the SCM-4.0 encoder, our proposed framework introduces

a 48% average complexity reduction with only 2% BD-Rate increase. The pro-

posed framework is the first work in HEVC-SCC transcoding and can significantly

benefit SC video delivery for bandwidth-critical applications.

Finally, a novel SCC-HEVC heterogeneous transcoding framework is intro-

duced based on mode mapping techniques to support backward compatibilities over

legacy HEVC devices. Based on the statistical studies and the side information

extracted from the decoded SCC bitstream, our proposed transcoding framework

can efficiently and accurately determine the corresponding HEVC mode and parti-

tion. 51% and 81% average re-encoding complexity reductions are achieved under

102

All-Intra (AI) and Low-Delay (LD) configurations, respectively, compared with

the trivial SCC-HEVC transcoding solution. We further integrate the proposed

framework into the single-input-multiple-output (SIMO) paradigm to transcode

one high-quality SCC bitstream into multiple reduced-quality HEVC bitstreams

and achieves 49% and 79% complexity reductions under All-Intra (AI) and Low-

Delay (LD) configurations, respectively. The proposed framework is the first work

in SCC-HEVC transcoding and significantly reduces the system processing com-

plexity and delay to facilitate adaptive SC streaming services over the edge clouds.

8.1.2 Two-Tier 360-degree Video Streaming

In this thesis, a two-tier 360-degree video streaming framework is proposed.

The base-tier (BT) streams video chunks covering the entire 360 view span en-

coded with a basic quality and pre-fetched in a long video buffer to handle dynam-

ics in both network bandwidth and user viewing directions. The enhancement-tier

(ET) streams video chunks in higher quality covering the predicted user FoV to

boost the delivered video quality when extra bandwidth is available. A prioritized

buffer-control based scheduling algorithm is proposed to adaptively determine the

requesting tier and rate. Our proposed framework fully utilizes the potential of

network pre-fetching and improve the bandwidth utilization while simultaneously

accommodating the users viewing direction changes. Through our simulations

driven by real network and view direction traces, our proposed framework demon-

strates superior delivered video rendering rate (i.e., 3.7x) and system robustness

against the view and bandwidth dynamics, compared with the benchmark 360-

degree video streaming solutions.

103

8.2 Future Work

8.2.1 Hardware Accelerated Screen Content Encoding

In this thesis, software-based encoder acceleration framework and algorithms

are proposed based on machine learning techniques. The framework is designed

without changing the low-level implementations of Intra, IBC and PLT modes.

Therefore, the prior HEVC and SCC fast algorithms on each individual mode could

be incorporated into our proposed framework for an additional encoder speed-up.

The overall performance is still far from realtime SC applications and therefore

requires hardware level parallel processing (for example, using DSP, FPGA or GPU

for encoder acceleration), Processing Unit coordination (i.e., between control core

and encoding cores for request scheduling and corresponding I/O optimization) and

Data-level optimization (e.g., using SIMD implementation). Besides, the incoming

chipset with specialized internal silicon designed for machine learning (ML) and

artificial intelligence (AI) can further promote the machine learning based SC

encoder optimization.

8.2.2 Adaptive Screen Content Distribution over Cloud

In this thesis, a Single-Input-Multiple-Output (SIMO) screen content transcod-

ing system prototype is proposed, to support screen content distributions over the

cloud. This framework efficiently compresses the SC video to reduce the backbone

traffic throughput between the central content server and the local edge servers.

Inside the edge clouds, multiple copies of SC videos with different quality levels

are generated to support the adaptive SC video streaming, in which subscribers

can flexibly request the most suitable video version given the network and de-

104

Edge Server
SIMO Transcoder

WiFi

3G

LTE

Client A

Client C

Client B

Desktop
Resolution: 4K
Decoder: VP9
Frame Rate: 60 Hz

Remote Central SC
Content Server

Efficient
SCC Stream

Smartphone
Resolution: 1080p
Battery: 75%
Decoder: HEVC
Frame Rate: 30 Hz

Smartphone
Resolution: 720p
Battery: 25%
Decoder: H.264/AVC
Frame Rate: 30 Hz

Figure 8.1: SIMO Screen Content Streaming over Edge Cloud

vice constraints, such as the available bandwidth, display resolution, battery life,

computing capability, etc.

Within the scope of this thesis, for simplicity but without loss of generality,

only the quality scaling is considered. In practice, temporal and spatial resolution

scalings can be combined and optimized. On the other hand, the proposed system

prototype at the edge clouds only tackles the bitstream conversions from SCC to

HEVC. In practice, heterogeneous transcoding can be extended to support other

coding standards, such as H.264/AVC, VP9, etc. The generalized paradigm is

structured as illustrated in Figure 8.1.

105

8.2.3 Multi-tier Multi-path 360-degree Video Streaming

In this thesis, a general two-tier 360-degree video streaming framework is pro-

posed for VR/AR content distribution. This general framework can be further

extended (for example, based on motion-constrained tile set, as studied in [63])

and improved in many aspects, as briefly summarized into the followings.

View Prediction: In 360-degree video streaming, the view prediction method-

ology has a great impact on the system performance. The sample-based linear

prediction method in this thesis can be definitely improved, for instance, using

some advanced machine learning based regression solutions or even incorporated

with content-based visual clues (e.g., via saliency analysis). Additionally, the view-

ing histories from other users watching the same or similar video can be mined as

the “side” information to facilitate the view prediction of the target user. The

spatial audio information and its semantic implication can also serve as additional

side information to assist view prediction, as studied in [20]

Network Scheduling : Deep learning techniques have been widely used in net-

working applications in recent years and demonstrate superior performance beyond

the traditional throughput-based or buffer-based approaches. For example, in a

recent work [44], reinforcement learning is applied to derive target adaptive bitrate

(ABR) during video streaming and achives significant performance improvement.

A potential future direction is to utilize deep learning techniques to make schedul-

ing decisions adaptively for 360 video or VR/AR to improve end user QoE.

Multi-tier Streaming : This thesis presents a general two-tier system prototype

from a high-level and demonstrates the potential. In this framework, base-tier

(BT) and enhancement-tier (ET) can be treated as video chunks with different

view coverage, rate allocation, scheduling priority and prefetching configurations.

106

Therefore, an intuitive yet potential extension is to generalize the two-tier system

to a multiple-tier system. The video segments in different tiers provide additional

combination flexibility to increase bandwidth utilization and streaming robustness

against the bandwidth and user viewport dynamics. For example, if video re-

transmission is allowed, we can design a third-tier of video segments (coded using

tiles) to pack up the coverage gap between the predicted viewing direction and the

user’s ground-truth FoV as the “correction tier” (CT), assuming the small video

tile requires less time to be delivered and the tiling does not introduce significant

coding efficiency degradation.

Multi-path Streaming : This thesis only presents a general two-tier system pro-

totype simulated over a 4G environment. In fact, the client may have multiple

access links (e.g., WiFi, cellular, future 5G network) with different channel charac-

teristics in terms of throughputs, latency, reliability and service cost, as illustrate

in Figure 8.2. Therefore, in practice, multi-path 360-degree video streaming can

jointly utilize the advantages from each path and potentially improve the delivered

360 video QoE. Some preliminary studies and results are summarized and provided

in [62].

107

Figure 8.2: Multi-Path 360 Video Streaming Demonstration

108

References

[1] E. Alshina, J. Boyce, A. Abbas, and Y. Ye. JVET common test conditions

and evaluation procedures for 360o video, JCTVC Doc. G1030, 2017.

[2] G. Bjontegaard. Calculation of Average PSNR differences Between RD

Curves, VCEG Doc. M33, 2001.

[3] S. G. Blasi, E. Peixoto, B. Macchiavello, E. M. Hung, I. Zupancic, and

E. Izquierdo. Context adaptive mode sorting for fast hevc mode decision.

In 2015 IEEE International Conference on Image Processing (ICIP), pages

1478–1482, Sept 2015.

[4] M. Budagavi, J. Furton, G. Jin, A. Saxena, J. Wilkinson, and A. Dickerson.

360 degrees video coding using region adaptive smoothing. In Proc. IEEE Int.

Conf. Image Processing (ICIP), pages 750–754. IEEE, Sept. 2015.

[5] J. Chen, Y. Chen, T. Hsieh, R. Joshi, M. Karczewicz, W.-S. Kim, X. Li,

C. Pang, W. Pu, K. Rapaka, J. Sole, L. Zhang, and F. Zou. Description of

screen content coding technology proposal by Qualcomm, JCTVC Doc. Q0031,

2014.

[6] C.-H. Cheung and L.-M. Po. A novel cross-diamond search algorithm for fast

109

block motion estimation. IEEE Transactions on Circuits and Systems for

Video Technology, 12(12):1168–1177, Dec 2002.

[7] R. Cohen, F. Liu, C. S. Ping, N.-M. Cheung, Y. Chau, and S.-K. Yeung.

AHG8: 4:4:4 game content sequences for HEVC Range Extensions develop-

ment, JCTVC Doc. N0294, 2013.

[8] A. J. Daz-Honrubia, J. L. Martnez, J. M. Puerta, J. A. Gmez, J. D. Cock, and

P. Cuenca. Fast quadtree level decision algorithm for h.264/hevc transcoder.

In 2014 IEEE International Conference on Image Processing (ICIP), pages

2497–2501, Oct 2014.

[9] G. V. der Auwera, H. M. Coban, and M. Karczewicz. Truncated Square

Pyramid Projection (TSP) For 360 Video, JVET Doc. D0071, 2016.

[10] W. Ding, Y. Shi, and B. Yin. YUV444 test sequences for screen content,

JCTVC Doc. L0431, 2013.

[11] F. Duanmu, Y. He, X. Xiu, P. Hanhart, Y. Ye, and Y. Wang. Hybrid cubemap

projection format for 360-degree video coding. In 2018 Data Compression

Conference, pages 404–404, March 2018.

[12] F. Duanmu, E. Kurdoglu, S. A. Hosseini, Y. Liu, and Y. Wang. Prioritized

buffer control in two-tier 360 video streaming. In Proceedings of the Workshop

on Virtual Reality and Augmented Reality Network, VR/AR Network ’17,

pages 13–18, New York, NY, USA, 2017. ACM.

[13] F. Duanmu, E. Kurdoglu, Y. Liu, and Y. Wang. View direction and bandwidth

adaptive 360 degree video streaming using a two-tier system. In 2017 IEEE

110

International Symposium on Circuits and Systems (ISCAS), pages 1–4, May

2017.

[14] F. Duanmu, E. Kurdoglu, Y. Liu, and Y. Wang. View direction and bandwidth

adaptive 360 degree video streaming using a two-tier system. In Proc. IEEE

International Symposium on Circuits and Systems, ISCAS ’17, Baltimore,

MD, USA, 2017. IEEE.

[15] F. Duanmu, Z. M, M. Xu, W. Wang, and H. Yu. Non-SCCE1: Analysis of

Full Frame IBC Block Vector Distribution, JCTVC Doc. R0269, 2014.

[16] F. Duanmu, Z. Ma, W. Wang, M. Xu, and Y. Wang. A novel screen content

fast transcoding framework based on statistical study and machine learning.

In 2016 IEEE International Conference on Image Processing (ICIP), pages

4205–4209, Sept 2016.

[17] F. Duanmu, Z. Ma, and Y. Wang. Fast cu partition decision using machine

learning for screen content compression. In 2015 IEEE International Confer-

ence on Image Processing (ICIP), pages 4972–4976, Sept 2015.

[18] F. Duanmu, Z. Ma, and Y. Wang. Fast mode and partition decision using

machine learning for intra-frame coding in hevc screen content coding exten-

sion. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

6(4):517–531, Dec 2016.

[19] F. Duanmu, Z. Ma, M. Xu, and Y. Wang. An hevc-compliant fast screen

content transcoding framework based on mode mapping. IEEE Transactions

on Circuits and Systems for Video Technology, pages 1–1, 2018.

111

[20] F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang. A subjective study of

viewer navigation behaviors when watching 360-degree videos on computers.

In 2018 IEEE International Conference on Multimedia and Expo (ICME),

pages 1–6, July 2018.

[21] F. Duanmu, M. Xu, Y. Wang, and Z. Ma. Hevc-compliant screen content

transcoding based on mode mapping and fast termination. In 2017 IEEE

Visual Communications and Image Processing (VCIP), pages 1–4, Dec 2017.

[22] L. Guo, M. Karczewicz, and J. Sole. RCE3: Results of Test 3.1 on Palette

Mode for Screen Content Coding, JCTVC Doc. N0247, 2013.

[23] P. Hanhart, X. Xiu, F. Duanmu, Y. He, and Y. Ye. InterDigitals Response

to the 360 Video Category in Joint Call for Evidence on Video Compression

with Capability beyond HEVC, JVET Doc. G0024, 2017.

[24] Y. He, X. Xiu, P. Hanhart, Y. Ye, F. Duanmu, and Y. Wang. Content-

adaptive 360-degree video coding using hybrid cubemap projection. In 2018

Picture Coding Symposium (PCS), pages 313–317, June 2018.

[25] A. J. D. Honrubia, J. L. Martnez, P. Cuenca, J. A. Gmez, and J. M. Puerta.

A data-driven probabilistic ctu splitting algorithm for fast h.264/hevc video

transcoding. In 2015 Data Compression Conference, pages 449–449, April

2015.

[26] J. Hou, D. Li, Z. Li, and X. Jiang. Fast cu size decision based on texture com-

plexity for hevc intra coding. In Proceedings 2013 International Conference

on Mechatronic Sciences, Electric Engineering and Computer (MEC), pages

1096–1099, Dec 2013.

112

[27] W. Jiang, H. Ma, and Y. Chen. Gradient based fast mode decision algo-

rithm for intra prediction in hevc. In 2012 2nd International Conference

on Consumer Electronics, Communications and Networks (CECNet), pages

1836–1840, April 2012.

[28] R. Joshi, J. Xu, R. Cohen, S. Liu, Z. Ma, and Y. Ye. Screen Content Coding

Test Model 4 Encoder Description (SCM 4), JCTVC Doc. T1014, 2015.

[29] J. Jung, B. Bross, P. Chen, and W.-J. Han. Description of Core Experiment

9 (CE9): MV Coding and Skip/Merge operations, JCTVC Doc. D609, 2011.

[30] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, and J. Lyu. Real-time band-

width prediction and rate adaptation for video calls over cellular networks.

In Proceedings of the 7th International Conference on Multimedia Systems,

MMSys ’16, New York, NY, USA, 2016. ACM.

[31] E. Kuzyakov. Under the hood: Building 360 video, 2015.

[32] E. Kuzyakov. Next-generation video encoding techniques for 360 video and

vr, 2016.

[33] D. K. Kwon and M. Budagavi. Fast intra block copy (intrabc) search for hevc

screen content coding. In 2014 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 9–12, June 2014.

[34] D. Lee, S. Yang, H. J. Shim, and B. Jeon. Fast transform skip mode decision

for hevc screen content coding. In 2015 IEEE International Symposium on

Broadband Multimedia Systems and Broadcasting, pages 1–4, June 2015.

[35] B. Li and J. Xu. Hash-based motion search, JCTVC Doc. Q0245, 2014.

113

[36] B. Li and J. Xu. A fast algorithm for adaptive motion compensation precision

in screen content coding. In 2015 Data Compression Conference, pages 243–

252, April 2015.

[37] B. Li, J. Xu, G. J. Sullivan, Y. Zhou, and B. Lin. Adaptive motion vector

resolution for screen content, JCTVC Doc. S0085, 2014.

[38] B. Li, J. Xu, and F. Wu. A unified framework of hash-based matching for

screen content coding. In 2014 IEEE Visual Communications and Image

Processing Conference, pages 530–533, Dec 2014.

[39] R. Li, B. Zeng, and M. L. Liou. A new three-step search algorithm for block

motion estimation. IEEE Transactions on Circuits and Systems for Video

Technology, 4(4):438–442, Aug 1994.

[40] X. Li, J. Sole, and M. Karczewicz. Adaptive MV precision for Screen Content

Coding, JCTVC Doc. P0283, 2014.

[41] H.-C. Lin, C.-Y. Li, J.-L. Lin, S.-K. Chang, and C.-C. Ju. An efficient compact

layout for octahedron format, JVET Doc. D0142, 2016.

[42] J.-L. Lin, Y.-P. Tsai, Y.-W. Huang, and S. Lei. Improved Advanced Motion

Vector Prediction, JCTVC Doc. D125, 2011.

[43] Y. Liu, Z. Chen, J. Fang, and P. Chang. SVM based fast intra CU depth

decision for hevc. In 2015 Data Compression Conference, pages 458–458,

April 2015.

[44] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming

with pensieve. In Proceedings of the Conference of the ACM Special Interest

114

Group on Data Communication, SIGCOMM ’17, pages 197–210, New York,

NY, USA, 2017. ACM.

[45] MATLAB. Neural Network Toolbox, Release 2013b, Natick, MA, 2013.

[46] MATLAB. Statistics Toolbox, Release 2013b, Natick, MA, 2013.

[47] K. McCann, B. Bross, S. Sekiguchi, and W.-J. Han. Encoder-Side Description

of HEVC Test Model (HM), JCTVC Doc. C402, 2010.

[48] A. Nagaraghatta, Y. Zhao, G. Maxwell, and S. Kannangara. Fast h.264/avc to

hevc transcoding using mode merging and mode mapping. In 2015 IEEE 5th

International Conference on Consumer Electronics - Berlin (ICCE-Berlin),

pages 165–169, Sept 2015.

[49] C. Pang, J. Sole, L. Guo, M. Karczewicz, and R. Joshi. Non-RCE3: Intra

Motion Compensation with 2-D MVs, JCTVC Doc. N0256, 2013.

[50] R. Pantos and W. May. HTTP live streaming. RFC, 8216:1–60, 2017.

[51] E. Peixoto, B. Macchiavello, R. L. de Queiroz, and E. M. Hung. Fast

h.264/avc to hevc transcoding based on machine learning. In 2014 Inter-

national Telecommunications Symposium (ITS), pages 1–4, Aug 2014.

[52] E. Peixoto, B. Macchiavello, E. M. Hung, and R. L. de Queiroz. A fast hevc

transcoder based on content modeling and early termination. In 2014 IEEE

International Conference on Image Processing (ICIP), pages 2532–2536, Oct

2014.

[53] E. Peixoto, B. Macchiavello, E. M. Hung, A. Zaghetto, T. Shanableh, and

E. Izquierdo. An h.264/avc to hevc video transcoder based on mode mapping.

115

In 2013 IEEE International Conference on Image Processing, pages 1972–

1976, Sept 2013.

[54] Y. Piao, J. Min, and J. Chen. Encoder Improvement of Unified Intra Predic-

tion, JCTVC Doc. C207, 2010.

[55] L.-M. Po and W.-C. Ma. A novel four-step search algorithm for fast block

motion estimation. IEEE Transactions on Circuits and Systems for Video

Technology, 6(3):313–317, Jun 1996.

[56] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 Video delivery

over cellular networks. In Proceedings of the 5th Workshop on All Things

Cellular: Operations, Applications and Challenges, ATC ’16, pages 1–6, New

York, NY, USA, 2016. ACM.

[57] K. Rapaka and J. Xu. Software for SCM with hash based motion search,

JCTVC Doc. Q0248, 2014.

[58] I. Sodagar. The mpeg-dash standard for multimedia streaming over the in-

ternet. IEEE Multimedia, 18(4):62–67, 2011.

[59] I. Sodagar. The mpeg-dash standard for multimedia streaming over the in-

ternet. IEEE MultiMedia, 2011.

[60] G. J. Sullivan, J. M. Boyce, Y. Chen, J. R. Ohm, C. A. Segall, and A. Vetro.

Standardized extensions of high efficiency video coding (hevc). IEEE Journal

of Selected Topics in Signal Processing, 7(6):1001–1016, Dec 2013.

[61] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of the high

116

efficiency video coding (hevc) standard. IEEE Transactions on Circuits and

Systems for Video Technology, 22(12):1649–1668, Dec 2012.

[62] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. Multi-path

multi-tier 360-degree video streaming in 5g networks. In Proceedings of the

9th ACM Multimedia Systems Conference, MMSys ’18, pages 162–173, New

York, NY, USA, 2018. ACM.

[63] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. A two-

tier system for on-demand streaming of 360 degree video over dynamic net-

works. IEEE Journal on Emerging and Selected Topics in Circuits and Sys-

tems, 9(1):43–57, March 2019.

[64] G. Tian and Y. Liu. Towards agile and smooth video adaptation in dynamic

http streaming. In Proceedings of the 8th international conference on Emerging

networking experiments and technologies, pages 109–120. ACM, 2012.

[65] A. M. Tourapis. Enhanced predictive zonal search for single and multiple

frame motion estimation. In Visual Communications and Image Processing

2002, San Jose, CA, USA, January 19, 2002, pages 1069–1079, 2002.

[66] S. H. Tsang, Y. L. Chan, and W. C. Siu. Fast and efficient intra coding

techniques for smooth regions in screen content coding based on boundary

prediction samples. In 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 1409–1413, April 2015.

[67] A. Vetro, C. Christopoulos, and H. Sun. Video transcoding architectures and

techniques: an overview. IEEE Signal Processing Magazine, 20(2):18–29, Mar

2003.

117

[68] C. Wang, B. Li, J. Wang, H. Zhang, H. Chen, Y. Xu, and Z. Ma. Single-

input-multiple-ouput transcoding for video streaming. In 2016 IEEE 18th

International Workshop on Multimedia Signal Processing (MMSP), pages 1–

5, Sept 2016.

[69] S. Wang, M. Jiao, T. Lin, and K. Zhou. AHG8: YUV444 and RGB screen

content test sequences, JCTVC Doc. L0317, 2013.

[70] Y.-K. Wang, Hendry, and M. Karczewicz. Tile based VR video encoding and

decoding schemes, JCTVC Doc. X0077, 2016.

[71] M. Wien, V. Baroncini, J. Boyce, A. Segall, and T. Suzuki. Joint Call for

Evidence on Video Compression with Capability beyond HEVC, JCTVC Doc.

F1002, 2017.

[72] M. Xu, W. Wang, Z. Ma, and H. Yu. AHG6: Information on the Usage of

IBC, Palette, and Intra Prediction in SCC, JCTVC Doc. T0194, 2015.

[73] Y. Xu, W. Huang, W. Wang, F. Duanmu, and Z. Ma. 2-d index map coding

for hevc screen content compression. In 2015 Data Compression Conference,

pages 263–272, April 2015.

[74] H. Yu, R. Cohen, W. Gao, Y. Cao, J. Ye, X. Wang, A. Vetro, and H. Sun.

AHG8: New 4:4:4 screen-content sequences for HEVC extension development,

JCTVC Doc. L0301, 2013.

[75] H. Yu, R. Cohen, K. Rapaka, and J. Xu. Common Test Conditions for Screen

Content Coding, JCTVC Doc. T1015, 2015.

118

[76] C. Zhang, Y. Lu, J. Li, and Z. Wen. segmented sphere projection (SSP) for

360-degree video content, JVET Doc. D0030, 2016.

[77] H. Zhang and Z. Ma. Early termination schemes for fast intra mode decision

in high efficiency video coding. In 2013 IEEE International Symposium on

Circuits and Systems (ISCAS2013), pages 45–48, May 2013.

[78] H. Zhang and Z. Ma. Fast intra mode decision for high efficiency video coding

(hevc). IEEE Transactions on Circuits and Systems for Video Technology,

24(4):660–668, April 2014.

[79] H. Zhang, Q. Zhou, N. Shi, F. Yang, X. Feng, and Z. Ma. Fast intra mode

decision and block matching for hevc screen content compression. In 2016

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1377–1381, March 2016.

[80] L. Zhang, J. Chen, J. Sole, M. Karczewicz, X. Xiu, Y. He, and Y. Ye. SCCE5

Test 3.2.1: In-loop Color-Space Transform, JCTVC Doc. R0147, 2014.

[81] M. Zhang, Y. Guo, and H. Bai. Fast intra partition algorithm for hevc screen

content coding. In 2014 IEEE Visual Communications and Image Processing

Conference, pages 390–393, Dec 2014.

[82] M. Zhang, J. Qu, and H. Bai. Entropy-based fast largest coding unit partition

algorithm in high-efficiency video coding. Entropy, 15(6):2277–2287, 2013.

[83] L. Zhao, L. Zhang, S. Ma, and D. Zhao. Fast mode decision algorithm for intra

prediction in hevc. In 2011 Visual Communications and Image Processing

(VCIP), pages 1–4, Nov 2011.

119

[84] F. Zheng, Z. Shi, X. Zhang, and Z. Gao. Effective h.264/avc to hevc transcoder

based on prediction homogeneity. In 2014 IEEE Visual Communications and

Image Processing Conference, pages 233–236, Dec 2014.

[85] F. Zheng, Z. Shi, X. Zhang, and Z. Gao. Fast h.264/avc to hevc transcoding

based on residual homogeneity. In 2014 International Conference on Audio,

Language and Image Processing, pages 765–770, July 2014.

[86] M. Zhou. A study on compression efficiency of icosahedral projection, JVET

Doc. D0023, 2016.

[87] C. Zhu, X. Lin, and L.-P. Chau. Hexagon-based search pattern for fast block

motion estimation. IEEE Transactions on Circuits and Systems for Video

Technology, 12(5):349–355, May 2002.

[88] S. Zhu and K.-K. Ma. A new diamond search algorithm for fast block matching

motion estimation. In Proceedings of ICICS, 1997 International Conference

on Information, Communications and Signal Processing. Theme: Trends in

Information Systems Engineering and Wireless Multimedia Communications,

volume 1, pages 292–296 vol.1, Sep 1997.

